

Beyond Aggregates: Light Scattering Tools for Biophysical Characterization and Quantitation

Sophia Kenrick

Wyatt Technology Corporation

© 2019 Wyatt Technology Corporation – All Rights Reserved

1

About Wyatt Technology Corporation

- ✓ Founded in 1982 by Dr. Philip J. Wyatt to commercialize multi-angle light scattering (MALS)
- ✓ Award-winning, robust, low maintenance, easy to use instruments that have been validated by thousands of peer-reviewed publications
- Leading provider of light scattering instruments for solution-based characterization of macromolecules and nanoparticles:

molar mass, size, charge, & interactions

- ✓ Pioneer of SEC-MALS and FFF-MALS, now standard analytical tools in protein, biopharma, biopolymer, synthetic polymer labs and more
- Pioneer of plate-based dynamic light scattering (DLS), an essential technology for high-throughput protein and nanoparticle formulation

Light scattering provides critical attributes

Multi-Angle Light Scattering

The amount of light scattered at 0° is directly proportional to the molar mass and mass concentration

$$I_{scattered} \propto M \cdot c \cdot \left(\frac{dn}{dc}\right)^2$$

The variation of scattered light with scattering angle is proportional to the average size of the scattering molecules.

Dynamic light scattering (DLS)

Typical MALS hardware setup and applications

SEC-MALS of biomolecules

- Proteins, polysaccharides, nucleic acids, conjugates
- Measure monomer and aggregate molar mass, molar mass distribution and polydispersity (M_w/M_n)
- Characterize branching and degree of conjugation

Eclipse AF4-MALS of BioNPs

- Viral vectors, EVs/exosomes, lipid or other NPs
- Isolate, identify, and quantify nanoparticle size, molar mass, and concentration
- Characterize shape/structure and payload/cargo content

Light scattering and refractive index data are measured for each eluting slice to yield *absolute* molecular weight, R_g , and (with DLS) R_h .

Light scattering and refractive index data are measured for each eluting slice to yield *absolute* molecular weight, R_g , and (with DLS) R_h .

Case Study 1: Adenovirus

Measure size of monomer and aggregates Quantify number of aggregates Relate aggregation to stress conditions

WYATT

WYAT

Adenovirus

- Small amount of aggregates will not be detected by batch DLS.
- R_g and R_h can be measured by MALS and online DLS, respectively.

Quantitation: size, particle counts, aggregate%

	Monomer		Aggregate					
	Radius (nm)	Number of particles	Radius (nm)	Number of particles	% by number (MALS)	% by mass (MALS)	% by UV peak area	
Run 1	43.7	1.8×10^{10}	77	1.4×10^{7}	0.08%	2.76%	0.83%	
Run 2	44	1.7×10^{10}	82	1.0×10^{7}	0.06%	2.09%	1.06%	
Average	43.9	1.75×10^{10}	80	1.2×10^{7}	0.07%	2.4%	0.9%	

Good reproducibility was obtained for both sizing and particle counting, despite very low amount of aggregate.

MALS provides more accurate quantitation of aggregate than traditional UV method.

- UV peak area may overestimate the percentage of large aggregates
- Scattering contribution in UV data is significant for particle radius >50 nm

How do stressors change the vector?

Freeze-thaw

- Isolate and quantify virus size with Eclipse AF4-MALS
- Sensitive and robust aggregation assessment

Fresh vs. aged

- Elution time and peak shape are not representative of size distribution
- Eclipse fractionation with DAWN MALS detector quantifies absolute size

Buffer effects

- Measure differences in size distribution between buffers
- Quantify number of particles: 1.7×10^{10} for each case

Case Study 2: Adenoassociated virus (AAV)

Comparison of separation techniques

Quantify genetic payload

Determine structure

AAV by SEC-MALS and Eclipse AF4-MALS

SEC-MALS

- SEC may be able to resolve monomer and oligomer
- SEC is not be the right tool to quantify large aggregates

Eclipse AF4-MALS

- AF4 provides better separation of confirmation of aggregate %
- HMW aggregates visible by AF4-MALS may be removed by SEC column

AAV genetic payload by SEC with multi-detection

Quantify genetic payload

 SEC/FFF cannot resolve empty and filled AAVs, but the apparent MW data from MALS and dRI may correlate to the percentage of full AAV

AAV structure by SEC with multi-detection

Confirm payload and measure shape

© 2019 Wyatt Technology Corporation – All Rights Reserved

Case Study 3: Formulation stability

High-throughput aggregate screening

Colloidal stability: $k_{\rm D}$ and A_2

Conformational stability: $T_{\rm m}$ and $T_{\rm agg}$

Benefits of batch DLS

Screening and characterization tool for formulation development

- High-throughput, low volume quality control for aggregates
- Perform studies as a function of time and temperature
- Screen small-molecule drugs: promiscuous inhibitors and binders
- Measure formulation viscosity

Measure interactions among molecules

Dynamic light scattering: Diffusion Interaction Parameter, $k_{\rm D}$

 $D_t = D_0(1 + k_D c)$

 $k_{\rm D} < 0$ attraction $k_{\rm D} > 0$ repulsion Static light scattering: Second virial coefficient, A_2 $R/K^* = Mc[1 - 2A_2Mc]$ $A_2 < 0$ attraction

 $A_2 > 0$ repulsion

Why measure concentration dependence?

k_D correlates with solution properties

- $-k_D > 0$ correlates to low viscosity
- $-k_D \lesssim 0$ correlates to high viscosity
- $-k_D \lesssim 0$ correlates with particles formation (e.g., after agitation)

Sample formulation space and determining key stability attributes.

- Interactions as a function of pH, excipient, salts, etc.
- Observe correlations between $k_{\rm D}, A_2$, and $T_{
 m agg}$

Positive correlation between $k_{\rm D}$ and many other stability-indicating parameters!

Tomar D.S., et al. (2018) Pharm. Res. 35:193.

η₁₅₀

B

Quantify colloidal stability, k_D and A_2

Formulation pH influences intermolecular interactions.

- Neutral pH causes undesirable attractive interactions
- Acidic and basic pH exhibit net repulsive interactions

	[OLS	SLS		
	R _h (nm)	$k_D (\mathrm{mL/g})$	M _w (kDa)	$A_2 (\mathrm{mol}\cdot\mathrm{mL}/\mathrm{g}^2)$	
Neutral	1.9	-8.5	15.0	-4.8×10^{-4}	
Acidic	2.0	+4.6	13.5	$+7.3 \times 10^{-4}$	
Basic	2.1	+3.7	14.7	$+5.0 \times 10^{-4}$	

Conformational stability from temperature

Acidic pH provides conformational stability.

- Midpoint unfolding temperature $T_{\rm m} = 69 \, {}^{\circ}{\rm C}$
- Confirm unfolding (not aggregation) via constant measured $M_{
 m w}$

Basic pH shows aggregation at elevated temperature

- Onset of aggregation/unfolding happens at lower T compared to acidic pH
- $-T_{agg}$ varies with concentration, ranging from 48 °C to 60 °C

Conclusion

Light scattering is not just for protein molecules and aggregates!

- Assess wide range of biotherapeutics, protein conjugates, and higher order structures.
- Extend characterization and quantitation to viruses, gene therapy and drug delivery vectors.

Static and dynamic light scattering provide a wide range of solutions for formulation stability.

- Measure nonspecific interactions and propensity to aggregate with DLS $(k_{\rm D})$ or SLS (A_2) .
- Characterize conformational stability ($T_{\rm m}$, $T_{\rm agg}$, time to aggregation, etc.)

Combine with complementary information for complete characterization.

For More Information

Sample application notes, webinars, & more at <u>www.wyatt.com/Library</u>.

Search over 14,000 peer-reviewed publications that feature Wyatt instruments at <u>www.wyatt.com/Bibliography</u>.

For information about a particular topic:

- Light Scattering Solutions: <u>www.wyatt.com/Solutions</u>
- SEC-MALS: <u>www.wyatt.com/SEC-MALS</u>
- DLS: <u>www.wyatt.com/DLS</u>
- CG-MALS: <u>www.wyatt.com/CG-MALS</u>

