Physicochemical and Immunological Comparison of CRM197 from Different Manufacturers and Expression Systems

John Hickey, Ph.D. Scientific Assistant Director Macromolecule and Vaccine Stabilization Center Department of Pharmaceutical Chemistry University of Kansas, Lawrence, KS

8th International Symposium on Higher Order Structure of Protein Therapeutics April 9th, 2019

www.mvsc.ku.edu

Macromolecular and Vaccine Stabilization Center (MVSC) is located in Department of Pharmaceutical Chemistry in School of Pharmacy at KU:

- Characterization, stabilization and formulation
- Vaccines (live and recombinant purified antigens, adjuvants)
- Biopharmaceuticals (proteins, peptides)

Our Team

Distinguished Professor, PI

Administrative Staff

Emily Thomas-Dykes Melinda Fish

Director, co-PI

Scientific Assistant Directors

Dr. Ozan Kumru

Post Docs, Research Associates

Dr. Ying Wan Dr. Prashant Kumar Dr. Vineet Gupta Dr. Neal Whitaker Dr. Kawaljit Kaur Dr. Jian Xiong Dr. Swathi Pullagurla Dr. David Holland Dr. Lorena Napolitano

Research Assistants Sara Birdjandi Dara Ogun

Graduate Students Sanjeev Agarwal Nishant Sawant Kaushal Jerajani Chris Bird Sakshi Bajoria

>Our group currently has ~25 members (graduate students, post-doctoral fellows, senior scientists, office/lab staff).

Our research grants and fee-for service contracts include complete <u>analytical</u> <u>characterization</u> and <u>formulation development</u> studies as well as per sample testing.

> Our focus is on the science of CMC development.

- <u>Early-stage</u> Characterize and compare candidates with structural assays, develop stability-indicating assays and identify degradation pathways
- <u>**Translational-stage</u>** Characterize, stabilize and formulate biological candidates for first-in-human clinical trials (Phase 1).</u>
- <u>Late-stage</u> Develop final formulations and perform analytical comparability assessments to support Phase 3 trials.
- Our research goals include developing analytical tools, elucidating degradation mechanisms, improving stability and correlating physicochemical changes with loss of potency

Analytical Characterization of Vaccines and Biopharmaceuticals

 \geq

The blind men and the elephant. Poem by John Godfrey Saxe (Cartoon originally copyrighted by the authors; G. Renee Guzlas, artists <u>http://www.nature.com/ki/journal/v62/n5/fig_tab/4493262f1.html</u>

Macromolecule and Vaccine Stabilization Center (www.mvsc.ku.edu)

- > Requires an overall assessment of results from a family of assays
- Physical, chemical, biological, immunological...
 - Key role in vaccine and biopharmaceutical development
 - e.g., process/formulation, testing, comparability, stability

Physical & Chemical Attributes

- Appearance
- Purity
- Primary Structure
- Secondary Structure
- Tertiary Structure
- Overall Conformational Stability
- Characterize Size (Oligomeric State)
- Measure Aggregation/Particles
- Charge Heterogeneity

Carrier Proteins In Polysaccharide-Conjugated Vaccines

Macromolecule and Vaccine Stabilization Center (www.mvsc.ku.edu) (2011) Knuf, M. et al, Vaccine 29:4881-4890 (2005) Adegbola, R.A. et al, Lancet 366:144-150 (2016) Hickey, J.M. et al, J Chrom B, 1032:23-38 (2011) Strugnell, R. et al, Underst. Mod. Vaccines Perspect. Vaccinol, 1:61-88

Carrier Protein

Tetanus Toxoid

Tetanus Toxoid

Tetanus Toxoid

Diphtheria Toxoid

Non-Typeable

H. influenzae

Derived Protein D

(PD)

all H. influenza

CRM₁₉₇

CRM₁₉₇

CRM₁₉₇

OMPC

Natural & Recombinant CRM197 ("CRM")

- Produced in Corynebacterium diptheriae (low yield) and requires BSL-2 manufacturing facility
- Natural CRM is commercially available but costly and potential issues obtaining sufficient material for preclinical/clinical studies
- CRM can be produced in recombinant expression systems (*E. coli* and *P. fluorescens*)
- How does recombinant CRM compare to natural CRM?

Overview of comparing the physicochemical properties of five CRM samples

(www.mvsc.ku.edu)

THE UNIVERSITY OF KANSAS

Comparison of Purity and Presence of Covalent-Linked Aggregates

Primary Structure (Intact mass analysis & peptide mapping)

Higher Order Structure Comparison at 10°C

Size Analysis and Quantitation of Soluble Aggregates

Sedimentation Velocity Analytical Ultracentrifugation (SV-AUC)

Sub-Micron and Sub-Visible Particle Analysis

15
T THE UNIVERSITY OF
K KANSAS
•

Comparison of Protein Charge Heterogeneity

Anion-Exchange Chromatography

Overview of comparing the physical stability of each CRM molecule as a function of stress (pH & temperature)

Empirical phase diagram of CRM molecules in PBS

85.0

78.75

72.5

66.25

€ ^{60.0}

47.5

35.0

28.75

22.5

16.25

10.0

85.0

78.75

72.5

66.25

60.0

53.75

47.5

35.0

28.75

22.5

16.25

10.0

5.8

ළි 41.25

Ũ

₽ 53.75

ja 41.25

Natural CRM

Overall comparison of natural and recombinant CRM

Acknowledgements

Macromolecule and Vaccine Stabilization Center

Overall Conformational Stability as a Function of Temperature

Differential Scanning Calorimetry (DSC)

Source	CRM	T _{onset} (°C) Mean ± 3SD	T _M 1 (°C) Mean ± 3SD	T _M 2 (°C) Mean ± 3SD
Recombinant	rCRM	35.0 ± 0.2	42.8 ± 0.1	51.1 ± 0.1
	EcoCRM	32.7 ± 0.3	42.0 ± 0.1	51.3 ± 0.2
	Pfenex CRM	34.8 ± 0.2	42.8 ± 0.1	51.1 ± 0.2
Natural	Vaxform CRM	33.5 ± 0.2	42.8 ± 0.1	51.1 ± 0.3
	C7 CRM	35.2 ± 0.6	44.0 ± 0.1	51.7 ± 0.1

Measuring binding affinity between CRM and mAbs

FIGURE 3: But is an optical analytical technique that analyzes the interference pattern of white light reflected from two surfaces. Changes in the number of molecules bound to the biosensor causes a shift in the interference pattern that is measured in real time.

Pall Life Sciences 2013

Source	CRM	K _{on} (M ⁻¹ s ⁻¹) Mean ± 3SD	K _{off} (s ⁻¹) Mean ± 3SD	K _D Mean ± 3SD
	EcoCRM	4 ± 1 × 10 ⁵	1 ± 1 × 10 ⁻³	3 ± 5 nM
Recombinant	rCRM	5 ± 1 × 10 ⁵	1 ± 1 × 10 ⁻³	3 ± 6 nM
	Pfenex CRM	5 ± 2 × 10 ⁵	1 ± 1 × 10 ⁻³	3 ± 5 nM
Natural	Vaxform CRM	5 ± 1 × 10 ⁵	2 ± 1 × 10 ⁻³	3 ± 3 nM
	C7 CRM	4 ± 1 × 10 ⁵	2 ± 1 × 10 ⁻³	5 ± 6 nM

ELISA using polyclonal anti-CRM

Source	CRM	LogEC ₅₀ Mean ± 3SD (µg/ml CRM)	99% Confidence Interval (µg/ml CRM)	R²
Recombinant	rCRM	2.3 ± 0.9	1.5 to 3.1	0.97
	EcoCRM	1.6 ± 0.9	0.9 to 2.3	0.99
	Pfenex CRM	1.8 ± 0.3	1.4 to 2.2	0.99
Natural	Vaxform CRM	1.3 ± 0.3	1.1 to 1.5	0.99
	C7 CRM	1.3 ± 0.3	1.0 to 1.6	0.98

PEG relative solubility of CRM molecules (Overview of PEG assay)

Data analysis from PEG Assay of CRM molecules

Three types of information can be obtained:

Relative PEG solubility of CRM molecules in PBS pH 7.2

Source	CRM	%PEG _{midpt} (w/v) (Mean ± 3SD)	Apparent Solubility (mg/ml) (Mean ± 3SD)
	rCRM	23.0 ± 0.2	27 ± 9
Recombinant	EcoCRM™	23.3 ± 0.2	30 ± 12
	Pfenex CRM	23.5 ± 0.1	31 ± 11
Natural	Vaxform CRM	21.5 ± 0.2	16 ± 10
	C7 CRM	24.0 ± 0.2	34 ± 12

n = 3

Pharmaceutical Quality/CMC of CRM

Can be used to assess comparability, lot-to-lot variability, process changes, etc.

Structural Attribute	Analytical Techniques
Protein Concentration, Purity, and	UV-Visible Spectroscopy
Proenzyme "nicking"	SDS-PAGE (Reduced vs. Non-reduced)
Primany Structure	Intact Mass
Fillinary Structure	Peptide Mapping
Additional Assays for Primary	Capillary Isoelectric Focusing (cIEF)
Structure/Protein Heterogeneity (Purity)	Anion Exchange Chromatography (AEX)
Secondary Structure	Far UV Circular Dichroism
Tertiary Structure	Intrinsic Fluorescence Spectroscopy
Overall Conformational Stability vs. Temperature	Differential Scanning Calorimetry (DSC)
Characterization of Size and Presence of Aggregates	Size Exclusion Chromatography (+/-MALS)
	Archimedes (RMS)
	Micro Flow Imaging (MFI)

- Critical quality attributes?
- Polysaccharide conjugation and immunogenicity of recombinant vs. natural CRM?

Macromolecule and Vaccine Stabilization Center (www.mvsc.ku.edu)

(2016) Bröker, M. et al, Hum. Vaccin. & Immunother., 12:1808-1824