#### Physiologically-relevant crowding effects on a protein-peptide interaction



Sam Stadmiller Pielak Lab UNC Chapel Hill April 10, 2018

# From fundamentals to applications

#### **Biophysics of cell signaling**



#### **Computation**



Yu et al. eLife. (2016)



# Cells are crowded and dynamic

#### Most experiments



#### Proteins' native environment



~ 300 g/L macromolecules

Yu et al. eLife. (2016)

#### Protein-protein interactions are essential to life



A. Garrow, Human Interactome, 2006, https://www.flickr.com/photos/andytrop/5234326542/in/album-72157625527595330/

#### SH3 interactions are important for cell signaling



Adapted from: Lodish, Molecular Cell Biology

# Protein and peptide of interest



http://protcalc.sourceforge.net

## Predicted bound structure



Kurcinski, M. *et al.* Nuc. Acids Res. (2015) http://biocomp.chem.uw.edu.pl/CABSdock/

# <sup>19</sup>F labeling of SH3



#### Peptide binding affects <sup>19</sup>F chemical environment



### NMR lineshapes are information-rich



with Chris Waudby

## NMR lineshapes are information-rich



with Chris Waudby

#### Protein association and free energy diagrams



**Reaction coordinate** 

#### Protein association and free energy diagrams



## SH3-peptide interaction in buffer



**Reaction coordinate** 

#### Investigating macromolecular crowding effects



http://protcalc.sourceforge.net

# Electrostatic crowder-SH3 interactions slightly perturb binding affinity

$$\Delta\Delta G_{D}^{\circ'} = \Delta G_{D,crowder}^{\circ'} - \Delta G_{D,buffer}^{\circ'}$$

![](_page_15_Figure_2.jpeg)

# Electrostatic crowder-SH3 interactions slightly perturb binding affinity

![](_page_16_Figure_1.jpeg)

$$\Delta\Delta G_A^{\circ'^{\ddagger}} = \Delta G_{A,\,crowder}^{\circ'^{\ddagger}} - \Delta G_{A,buffer}^{\circ'^{\ddagger}}$$

![](_page_17_Figure_2.jpeg)

![](_page_18_Figure_1.jpeg)

Only positively charged lysozyme affects the association rate constant

$$\Delta\Delta G_D^{\circ'^{\ddagger}} = \Delta G_{D, \, crowder}^{\circ'^{\ddagger}} - \Delta G_{D, buffer}^{\circ'^{\ddagger}}$$

![](_page_19_Figure_2.jpeg)

![](_page_20_Figure_1.jpeg)

Only high concentrations of negatively charged BSA affects the dissociation rate constant

## **Future Crowded Conditions**

![](_page_21_Picture_1.jpeg)

Investigate concentration and size dependence (if any)

# From fundamentals to applications

#### **Biophysics of cell signaling**

![](_page_22_Figure_2.jpeg)

#### **Computation**

![](_page_22_Picture_4.jpeg)

Yu et al. eLife. (2016)

![](_page_22_Figure_6.jpeg)

## Acknowledgments

#### Pielak Lab

![](_page_23_Picture_2.jpeg)

<u>NMR</u> Greg Young

![](_page_23_Picture_4.jpeg)

Lineshape Analysis Chris Waudby, UCL

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_7.jpeg)

![](_page_23_Picture_8.jpeg)