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UNTANGLING PHOTOPROTECTION IN CYANOBACTERIA

• Small protein consisting of two domains
• Contains a light-sensitive pigment carotenoid
• Inactive “orange” form has been crystallized
• Active “red” form has not been crystallized

3MG1

Photosynthetic organisms turn light into chemical 
energy through a complex interplay of proteins Kerfeld Lab - MSU

A KEY PLAYER: THE ORANGE CAROTENOID PROTEIN
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for cyanobacteria
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OCP ORANGE TO RED CONVERSION VIA LIGHT
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PROTECTIONS OBSERVED USING X-RAY FOOTPRINTING
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FOOTPRINTING DATA SUPPORTS DOMAIN SEPARATION
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Photo-
activation

Gupta, Guttman et al, "Local and global structural drivers for the 
photoactivation of the orange carotenoid protein," PNAS, V112 No41, 
E5567, 2015.
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CAROTENOID MOVEMENT WITHIN THE PROTEIN

Leverenz, Gupta et al, 
"Carotenoid translocation in 
the Orange Carotenoid 
Protein activates a 
photoprotective mechanism 
in cyanobacteria," Science
V348, 6242, p1463, 2015.

M
ore m

odification
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CAROTENOID MOVEMENT WITHIN THE PROTEIN
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10 µM OCPO 
(dark) Exposure MS Analysis

Irradiation time, 300 us

TIME DELAY
Blue light 

illumination

TIME RESOLVED ORANGE TO RED CONVERSION



MOLECULAR BIOPHYSICS AND INTEGRATED BIOIMAGING LBNL

TIME RESOLVED ORANGE TO RED CONVERSION
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Increase in SADecrease in SA
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PICTORAL VIEW OF ORANGE TO RED CONVERSION
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PROTECTION OF OCP WHEN FRP BINDS
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PROTECTION OF OCP WHEN FRP BINDS
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WHAT’S NEXT?

• Continue investigating OCP/PB/FRP as well as other systems

• Set up mixing experiment to enable faster time-resolved studies

• Investigate footprinting in live cells

• Develop drop-on-demand for achieving even higher doses

20 µM 10 µM 4 µM 2 µM 0 µM
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Mass Spec
Chris Petzold (JBEI)
Leanne Chan (JBEI)

Bringing Footprinting to the ALS
Mark Chance (Case Western)
Jen Bohon (Case Western, NSLSII)
Sayan Gupta (NSLS, now ALS)

Funding
LDRD through Physical Biosciences Division from 2012-2014
HUGE THANKS to Mark Chance, Cheryl Kerfeld, Dax Fu

THANKS TO…

Collaborations
Kerfeld Lab - MSU
Craik Lab – UCSF
Marqusee Lab – UCB
Merritt Lab – Stanford
Ajo-Franklin Lab – LBNL
Fu Lab - JHU

www.outfluxcg.comOMG I got an R01!! 
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EXTRA SLIDES FOLLOW
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DOSE AND EXPOSURE – SOME PRACTICAL ASPECTS

• Fraction Unmodified = 1-[modified/(total of mod+unmod)]
• Limit exposure to stay in linear region
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X-RAY RADIOLYSIS OF WATER

• Water radiolysis & primary radical products • Secondary radical product 
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• OH reacts within 1 to 5 molecular diameters of the site of formation*

*

Gupta et. al. JSR. 2014. 21(Pt 4):690-9  /  Pryor WA. A. R. Physiol. 1988. 48, 657-667  
Buxton et al.  JPC Ref. D. 1988. 17-34
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VARIATION IN REACTIONS BY RESIDUE

HIS

PHE +16 Da
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DEALING WITH RESIDUE-SPECIFIC REACTIVITY
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EXAMPLE 1: TOWARDS BIOHYBRIDS
Fe3+

Outer 
membrane

Q
e-

e-

e-

e-

MtrF

Periplasm

Cytoplasmic 
membrane

Fe2+

Electron machinery in 
Shewanella oneidensis

10e-

CO2

TiO2

H+

C6H5NO2

C6H5NH2

Goal: Engineering the 
nanoscale interface between 
living microbes and inorganic 
materials
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X-RAY FOOTPRINTING SHOWS MTRF PROTECTIONS

Heme 6

Heme 8

Heme 7

Areas around hemes 7 and 8 of 

MtrF are protected by Fe2O3

Fukushima et al, “The electron 

transfer protein MtrF binds to its 

inorganic substrate through 

electrostatic interactions created by

tertiary structure,” paper accepted 
to JACS. 


