

What X-ray footprinting can tell you about in protein interactions and conformation

Corie Ralston, Sayan Gupta Lawrence Berkeley National Laboratory

BERKELEY LAB

DNA interactions, PNAS

1986, 83, 5469.

1999, 71, 8965.

PROTEIN OH' FOOTPRINTING

CREDIT: OUTFLUXCG

2008 Bohon et al, ATPdependent structural changes in a protease, *Structure* 2008, 16, 1157.

2008

2009 Angel et al, Photoactivation of Rhodopsin *PNAS* 2009, 106

2010 Gross et al, Established laser-based hydroxyl radical footprinting: fast photochemical oxidation of proteins (FPOP) JACS 2010, 132, 15502.

2012 Gupta et al, Location and dynamics of protein waters *PNAS* 2012, 109

2013 Clatterbuck et al, Advances in in-vivo XFP *Mol Cell* 2013, 52, 506. **2014** Gupta et al, Transporter gating mechanism *Nature* 2014, 512(7512), 101.

2015 Leverenz et al, Carotenoid translocation in OCP *Science* 2015, 348(6242), 1463.

2015

2018

Brenowitz et al, Highthroughput tabletop chemical footprinting using pyrite shrink-wrap laminate LabChip 2015, 15, 1646.

2017

Stanford et al, Drug binding to LMPTP-A *Nat Chem Bio*. 2017, 13, 624.

2017

Gustavsson et al, Ligand interaction with atypical chemokine receptor *Nat. Commun.* 8:14135.

2008 Bohon et al, ATPdependent structural changes in a protease, *Structure* 2008, 16, 1157.

2008

2009 Angel et al, Photoactivation of Rhodopsin *PNAS* 2009, 106

2010 Gross et al, Established laser-based hydroxyl radical footprinting: fast photochemical oxidation of proteins (FPOP) JACS 2010, 132, 15502.

2012 Gupta et al, Location and dynamics of protein waters *PNAS* 2012, 109

2013 Clatterbuck et al, Advances in in-vivo XFP *Mol Cell* 2013, 52, 506. **2014** Gupta et al, Transporter gating mechanism *Nature* 2014, 512(7512), 101.

2015 Leverenz et al, Carotenoid translocation in OCP *Science* 2015, 348(6242), 1463.

2015

2018

Brenowitz et al, Highthroughput tabletop chemical footprinting using pyrite shrink-wrap laminate LabChip 2015, 15, 1646.

2017

Stanford et al, Drug binding to LMPTP-A *Nat Chem Bio*. 2017, 13, 624.

2017

Gustavsson et al, Ligand interaction with atypical chemokine receptor *Nat. Commun.* 8:14135.

2008 Bohon et al, ATPdependent structural changes in a protease, *Structure* 2008, 16, 1157.

2008

2009 Angel et al, Photoactivation of Rhodopsin *PNAS* 2009, 106

2010 Gross et al, Established laser-based hydroxyl radical footprinting: fast photochemical oxidation of proteins (FPOP) JACS 2010, 132, 15502.

2012 Gupta et al, Location and dynamics of protein waters *PNAS* 2012, 109

2013 Clatterbuck et al, Advances in in-vivo XFP *Mol Cell* 2013, 52, 506. **2014** Gupta et al, Transporter gating mechanism *Nature* 2014, 512(7512), 101.

2015 Leverenz et al, Carotenoid translocation in OCP *Science* 2015, 348(6242), 1463.

2015

2018

Brenowitz et al, Highthroughput tabletop chemical footprinting using pyrite shrink-wrap laminate LabChip 2015, 15, 1646.

2017

Stanford et al, Drug binding to LMPTP-A *Nat Chem Bio*. 2017, 13, 624.

2017

Gustavsson et al, Ligand interaction with atypical chemokine receptor *Nat. Commun.* 8:14135.

2008 Bohon et al, ATPdependent structural changes in a protease, *Structure* 2008, 16, 1157.

2008

2009 Angel et al, Photoactivation of Rhodopsin *PNAS* 2009, 106

2010 Gross et al, Established laser-based hydroxyl radical footprinting: fast photochemical oxidation of proteins (FPOP) JACS 2010, 132, 15502.

2012 Gupta et al, Location and dynamics of protein waters *PNAS* 2012, 109

2013 Clatterbuck et al, Advances in in-vivo XFP *Mol Cell* 2013, 52, 506. **2014** Gupta et al, Transporter gating mechanism *Nature* 2014, 512(7512), 101.

2015 Leverenz et al, Carotenoid translocation in OCP *Science* 2015, 348(6242), 1463.

2015

2018

Brenowitz et al, Highthroughput tabletop chemical footprinting using pyrite shrink-wrap laminate LabChip 2015, 15, 1646.

2017

Stanford et al, Drug binding to LMPTP-A *Nat Chem Bio*. 2017, 13, 624.

2017

Gustavsson et al, Ligand interaction with atypical chemokine receptor *Nat. Commun.* 8:14135.

Kiselar and Chance, *Ann. Rev. of Biophysics* 47:15, 15.1-19, 2018.

2008 Bohon et al, ATPdependent structural changes in a protease, *Structure* 2008, 16, 1157.

2008

2009 Angel et al, Photoactivation of Rhodopsin *PNAS* 2009, 106

2010 Gross et al, Established laser-based hydroxyl radical footprinting: fast photochemical oxidation of proteins (FPOP) JACS 2010, 132, 15502.

2012 Gupta et al, Location and dynamics of protein waters *PNAS* 2012, 109

2013 Clatterbuck et al, Advances in in-vivo XFP *Mol Cell* 2013, 52, 506. Gupta et al, Transporter gating mechanism *Nature* 2014, 512(7512), 101.

2014

2015 Leverenz et al, Carotenoid translocation in OCP *Science* 2015, 348(6242), 1463.

2015

2018

Brenowitz et al, Highthroughput tabletop chemical footprinting using pyrite shrink-wrap laminate *LabChip 2015, 15, 1646.*

2017

Stanford et al, Drug binding to LMPTP-A *Nat Chem Bio*. 2017, 13, 624.

2017

Gustavsson et al, Ligand interaction with atypical chemokine receptor *Nat. Commun.* 8:14135.

Kiselar and Chance, Ann. Rev. of Biophysics 47:15, 15.1-19, 2018. P-104

UNTANGLING PHOTOPROTECTION IN CYANOBACTERIA

Photosynthetic organisms turn light into chemical energy through a complex interplay of proteins

Kerfeld Lab - MSU

A KEY PLAYER: THE ORANGE CAROTENOID PROTEIN

- Small protein consisting of two domains
- Contains a light-sensitive pigment carotenoid
- Inactive "orange" form has been crystallized
- Active "red" form has not been crystallized

3'-hydroxyechinenone (hECN)

3MG1

• Light converts OCP from the inactive to active state

• Light converts OCP from the inactive to active state

The Phycobilisomes are the light-harvesting "antennae" for cyanobacteria

MOLECULAR BIOPHYSICS AND INTEGRATED BIOIMAGING LBNL

- Light converts OCP from the inactive to active state
- OCP then binds to the phycobilisome

MOLECULAR BIOPHYSICS AND INTEGRATED BIOIMAGING LBNL

- Light converts OCP from the inactive to active state
- OCP then binds to the phycobilisome
- Light energy is dissipated as heat

- Light converts OCP from the inactive to active state
- OCP then binds to the phycobilisome
- Light energy is dissipated as heat

- Light converts OCP from the inactive to active state
- OCP then binds to the phycobilisome
- Light energy is dissipated as heat
- FRP protein binds to OCP and helps it dissociate from the phycobilisome

MOLECULAR BIOPHYSICS AND INTEGRATED BIOIMAGING LBNL

- Light converts OCP from the inactive to active state
- OCP then binds to the phycobilisome
- Light energy is dissipated as heat
- FRP protein binds to OCP and helps it dissociate from the phycobilisome

MOLECULAR BIOPHYSICS AND INTEGRATED BIOIMAGING LBNL

- Light converts OCP from the inactive to active state
- OCP then binds to the phycobilisome
- Light energy is dissipated as heat
- FRP protein binds to OCP and helps it dissociate from the phycobilisome
- FRP also facilitates OCP conversion back to inactive state

- Light converts OCP from the inactive to active state
- OCP then binds to the phycobilisome
- Light energy is dissipated as heat
- FRP protein binds to OCP and helps it dissociate from the phycobilisome
- FRP also facilitates OCP conversion back to inactive state

OCP ORANGE TO RED CONVERSION VIA LIGHT

PROTECTIONS OBSERVED USING X-RAY FOOTPRINTING

FOOTPRINTING DATA SUPPORTS DOMAIN SEPARATION

Gupta, Guttman et al, "Local and global structural drivers for the photoactivation of the orange carotenoid protein," *PNAS*, V112 No41, E5567, 2015.

rrrrr

BERKELEY

CAROTENOID MOVEMENT WITHIN THE PROTEIN

.....

BERKELEY

Leverenz, Gupta et al, "Carotenoid translocation in the Orange Carotenoid Protein activates a photoprotective mechanism in cyanobacteria," *Science* V348, 6242, p1463, 2015.

CAROTENOID MOVEMENT WITHIN THE PROTEIN

TIME RESOLVED ORANGE TO RED CONVERSION

TIME RESOLVED ORANGE TO RED CONVERSION

PICTORAL VIEW OF ORANGE TO RED CONVERSION

PICTORAL VIEW OF ORANGE TO RED CONVERSION

TIME RESOLVED RED TO ORANGE CONVERSION

PROTECTION OF OCP WHEN FRP BINDS

PROTECTION OF OCP WHEN FRP BINDS

OCPR-FRP/OCPR

WHAT'S NEXT?

- Continue investigating OCP/PB/FRP as well as other systems
- Set up mixing experiment to enable faster time-resolved studies
- Investigate footprinting in live cells
- Develop drop-on-demand for achieving even higher doses

ALS SYNCHROTRON – CRYSTALLOGRAPHY AND MORE

ALS SYNCHROTRON – CRYSTALLOGRAPHY AND MORE

THANKS TO...

Bringing Footprinting to the ALS

Mark Chance (Case Western) Jen Bohon (Case Western, NSLSII) Sayan Gupta (NSLS, now ALS)

Mass Spec Chris Petzold (JBEI) Leanne Chan (JBEI)

Funding

LDRD through Physical Biosciences Division from 2012-2014 HUGE THANKS to Mark Chance, Otheryl Kerfeld, Dax Fu

OMG I got an

MOLECULAR BIOPHYSICS AND INTEGRATED BIOIMAGING LBNL

Collaborations

Kerfeld Lab - MSU Craik Lab – UCSF Marqusee Lab – UCB Merritt Lab – Stanford Ajo-Franklin Lab – LBNL Fu Lab - JHU

EXTRA SLIDES FOLLOW

DOSE AND EXPOSURE – SOME PRACTICAL ASPECTS

 Table 1. Rate Constants for Reaction of Amino Acids with

 Hydroxyl Radical and Hydrated Electrons^a

	$\rm HO^-$		e_{aq}^{-1}	
substrate	rate $(M^{-1} s^{-1})$	pH	rate $(M^{-1} s^{-1})^b$	pH
Cys	3.5×10^{10}	7.0	1.0×10^{10}	-7
Tyr	1.3×10^{10} 1.3×10^{10}	6.5-8.5 7.0	2.8×10^{8}	6.6

X-RAY RADIOLYSIS OF WATER

OH reacts within 1 to 5 molecular diameters of the site of formation*

Gupta et. al. JSR. 2014. 21(Pt 4):690-9 / Pryor WA. A. R. Physiol. 1988. 48, 657-667 Buxton et al. JPC Ref. D. 1988. 17-34

VARIATION IN REACTIONS BY RESIDUE

DEALING WITH RESIDUE-SPECIFIC REACTIVITY

Chemical Reviews, 2007, Vol. 107, No. 8 3519

Hydroxyl Radical and Hydrated Electrons ^a	Table 1. Rate Constants for Reaction of Amino	Acids	with
	Hydroxyl Radical and Hydrated Electrons ^a		

	$\rm HO^-$		e_{aq}^{-1}	
substrate	rate $(M^{-1} s^{-1})$	pH	rate $(M^{-1} s^{-1})^b$	pH
Cys	3.5×10^{10}	7.0	$1.0 imes10^{10}$	-7
Trp	1.3×10^{10}	6.5 - 8.5	3.0×10^{8}	7.8
Tyr	1.3×10^{10}	7.0	2.8×10^{8}	6.6
Met	8.5×10^{9}	6-7	4.5×10^{7}	7.3
Phe	6.9×10^{9}	7 - 8	1.6×10^{7}	6.9
His	4.8×10^{9}	7.5	6.0×10^{7}	-7
Arg	3.5×10^{9}	6.5 - 7.5	1.5×10^{8}	6.1
cystine	2.1×10^{9}	6.5	1.5×10^{10}	6.2
Ile	1.8×10^{9}	6.6	N/A	N/A
Leu	1.7×10^{9}	~ 6	$\leq 1 \times 10^7$	6.5
Val	8.5×10^{8}	6.9	$^{<5} \times 10^{6}$	6.4
Pro	6.5×10^{8}	6.8	2.0×10^{7}	6.7
Gln	5.4×10^{8}	6.0	N/A	N/A
Thr	5.1×10^{8}	6.6	2.0×10^{7}	7.0
Lys	3.5×10^{8}	6.6	2.0×10^{7}	7.4
Ser	3.2×10^{8}	~ 6	$< 3 \times 10^{7}$	6.1
Glu	2.3×10^{8}	6.5	$1-2 \times 10^{7}$	5.7 - 7
Ala	7.7×10^{7}	5.8	1.2×10^{7}	7.4
Asp	7.5×10^{7}	6.9	1.8×10^{7}	7.0
Asn	4.9×10^{7}	6.6	1.5×10^{8}	7.3
Gly	1.7×10^{7}	5.9	8.0×10^{8}	6.4

^a http://allen.rad.nd.edu/browse compil.html. ^b Davies, M. J.; Dean, R. T. *Radical-mediated protein oxidation: from chemistry to medicine*; Oxford University Press: 1997; pp 44-45.

EXAMPLE 1: TOWARDS BIOHYBRIDS

Goal: Engineering the nanoscale interface between living microbes and inorganic materials

X-RAY FOOTPRINTING SHOWS MTRF PROTECTIONS

Areas around hemes 7 and 8 of MtrF are protected by Fe_2O_3

Fukushima et al, "The electron transfer protein MtrF binds to its inorganic substrate through electrostatic interactions created by tertiary structure," **paper accepted to JACS**.

heme 8