Coherent 2D IR: Introduction to a Powerful New Structural Spectroscopy and Application to Difficult Protein Systems

Chris Middleton, PhaseTech Spectroscopy

Data courtesy of Martin Zanni, University of Wisconsin-Madison

Which peaks belong to which molecule?

Coherent 2D IR spectrum

crosspeaks: interaction through-bond, through-space, or chemical exchange

FT-IR ~ $|\mu|^2$

2D IR ~ |µ|⁴

+ more sensitive to secondary structure than FT-IR

+ no reference/background samples needed

solvent peak disappears!!

+ sample volumes < 1 uL

+ material as low as 1 ug + concentrations < 50 uM

+ flexible sampling – transmission, reflection, ATR, etc.

+ femtosecond (10⁻¹⁵) time resolution

+ scatter removal

+ difficult samples – aggregates, membranes, tissues, etc.

+ scan a single spectrum in < 1 sec! = study dynamic systems

ISOTOPE LABELING

2D IR provides:

2D lineshapes = environment Cross peaks = structure

STRUCTURE VIA LINEWIDTHS - HYDRATION AND DISORDER

STRUCTURE VIA LINEWIDTHS - HYDRATION AND DISORDER

Membrane-Bound Peptide

Ovispirin Antibiotic Peptide

JACS (2010) 132, 2832-2838

Transmembrane Protein

 $\begin{array}{c} \textbf{CD3} \zeta \\ \textbf{T-Cell Receptor Expression Protein} \end{array}$

PNAS (2006) 103, 3528-3533

Transmembrane Channel

M2 pH-Gated Proton Channel

Structure (2009) 17, 247-254

ANOTHER MEMBRANE PROTEIN - KCSA POTASSIUM CHANNEL

Two Proposed Mechanisms for Ion Transport

Single 2D IR spectra can be acquired with < 1 sec (average as needed)

Running averages can be used for real-time kinetics of 2D IR features

Example: Structural dynamics during amyloid aggregation into fibers

KINETICS OF AGGREGATION

Labels exhibit different kinetic timescales !?!?

Nucleation starts near the loop and propagates down the sheets.

F23, G24, Ala25, L27 form a transient parallel beta-sheet !!

...missing a structural intermediate.

Can inhibit fiber formation by targeting intermediate !!

Cataracts are caused by aggregation of lens proteins (crystallins)

In vitro, many crystallins form amyloid fibers under denaturing conditions.

Little-to-no evidence that human cataracts contain amyloid.

SEM/TEM imaging

Human cataract lens

Michael, R. et al. Vision Res. 48, 4 (2008).

OXYS strain of rats (causes enhanced glucose transport)

S. Marsili *et al. Exp. Eye Res.* 79, 5 (2004).

Only published examples that we can find for evidence of amyloid in lenses of animals or humans.

Strong couplings different gystallie are taine 20th form differends peaks. charasiteristipperest become are the energy of group of groups of group

Pig Tissue: Lenses dissected from pigs.

sectioned 25 μm thick

1636 cm⁻¹ absorption. Similar shapes. No 1620 cm⁻¹ diagonal peaks nor cross peaks. Thus, <u>no amyloid</u>.

Acid and UV treated lens tissue.

580

1620

1660

ω_{Probe} / cm⁻¹

1700

Amyloid features increase with time.

Amyloid first observed at irradiation times equivalent to 45 years exposure.

BREATHER SLIDE

JUST FYI...

single monolayer sensitivity

FGAIL peptide on a model monolayer of anionic membrane

high-throughput with microfluidics

Krummel J. Phys. Chem. Lett., **2016**, 7, 4865

JUST FYI...

different structures have different vibrational lifetimes

crosspeaks can reveal hidden vibrations

Hochstrasser J. Phys. Chem. B, 2009, 113, pp 8231 JUST FYI...

2D IR Wide-Field Microscopy

ACS Photonics (2016) 3, 1315

HDX

J. Phys. Chem. B (2013) 117, 15297

- Currently: Sold systems around the world to academics. Interested in learning about industrial applications, exploratory projects.
- 3-5 Years: Benchtop instrument (\$100-200k)

phasetechspectroscopy.com

Martin Zanni UW-Madison

Graduate
StudentsStudentsKacie RichNick KearnsJosh OstranderAriel AlpersteinJessi FlachMegan PettiErin BirdsallMiriam Bohlmann KunzCat Fields

Collaborations Juan de Pablo (Chicago), James Nowick (UC-Irvine), Dan Raleigh (Stony Brook)

Postdocs

Andy Jones Justin Lomont Michal Maj Tarasankar Das Funding NIH NIDDK / GMS / Glue, NSF CHEM / MRSEC, AFOSR