

UMD | NIST INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

Towards Developing a Structural Model of the NISTmAb Reference Material Using Experimental Constraints

Maria Monica Castellanos, Travis Gallagher, Kevin Mattison, Susan Krueger, Joseph Curtis

NIST Center for Neutron Research, National Institute of Standards and Technology Institute for Bioscience and Biotechnology Research

> Higher Order Structure Symposium Young Scientist Session

> > April 4, 2017

Native structure and free-energy landscape

- The three dimensional structure dictates the interactions that stabilize the folded state structure
 - Free energy of native and non-native states
- Funnel-shaped free energy landscape representing ensembles of structures
- Native state is an ensemble of marginally stable structures
- Overlap in configurations that lead to either stable monomers or aggregates
- Many unfolded states are prone to form very stable aggregates

Intermediate states may lead to aggregation

Hart FU, Hayer-Hartl M. **2009**. *Nat. Struct. Mol. Biol.* Roberts CJ. **2014**. *Trends Biotech.*

NISTmAb Reference Material

- First of its kind mAb (IgG1) reference material representative of the largest class of biologic drug
- Purposes:
 - Determining that measurement system is working properly
 - Assessing performance of new analytical technologies
- Standard to validate performance of the approximately 20-30 test methods used by industry to assess identity, purity, stability of mAb

Schiel, J.E., et al. **2014**, State-of-the-Art and Emerging Technologies for Therapeutic Monoclonal Antibody Characterization. ACS.

Why using Small-Angle Scattering?

NCNP Guide Hal

SAXS and SANS

Small-angle scattering is sensitive to the **position** of the atoms in the system Suitable for: protein structure, protein-protein interactions, complexes Length scales: 1.5 nm – 300 nm Sample concentrations: 0.1 mg/mL – no upper limit

SANS

- Neutrons interact with nuclei of atoms.
 Sensitive to H₂O/D₂O: Contrast matching to study multicomponent systems
- No radiation damage
- Volume ~ 500 µL, sample can be recovered
- Experiments must be done in a neutron scattering facility
- Temperature: few K to 373 K (at NCNR)

SAXS

- X-rays interact with electrons of atoms. Not sensitive to isotopic forms of an element
- Radiation damage might occur
- Volume ~ 10-100 μL
- Experiments can be done using a commercial source, or in a synchrotron facility
- Higher throughput than SANS

Sample characterization

SAXS and SANS experiments were performed at various concentrations of NISTmAb in 25 mM Histidine buffer with 0 and 150 mM of added NaCl, pH 6.0

Size-exclusion chromatography (SEC) shows that more than 99.2% of the sample is monomeric

Dynamic light scattering (DLS) shows a slight increase in hydrodynamic size after adding 150 mM NaCl

Scattering profiles of NISTmAb in dilute solutions

SAXS

SANS

SAXS data is reproducible in different instruments and facilities. No significant differences detected in the <u>dilute</u> scattering profiles in D₂O, H₂O, after adding 150 mM NaCI

Analysis of scattering profiles of NISTmAb in dilute solution

Using scattering, we can obtain the radius of gyration ($R_q = 48.8 + 1.2$ Å) and the distribution of atoms in the molecule

Solution Structure of the NISTmAb

Using the crystallographic coordinates of Fc and Fab, a model of the intact NISTmAb in solution is developed using atomistic simulations and experimental scattering constraints

Building a starting structure for the NISTmAb

Fc + Fab from crystal, provided by Travis Gallagher

Alignment of Fc + 2Fabs using a structure of an intact antibody

Add missing residues using psfgen: hinge region + C-terminal in heavy chain + hydrogens

Dilute solutions – MD simulations

- 10 ns MD simulations in <u>explicit</u> water used to equilibrate the initial structure
- Steady RMSD values of the fragments are obtained throughout the simulation

Torsion-angle MC simulations of NIST mAb

Scattering profile of model structures compared to experimental data

Scattering profiles of ensemble of simulated structures compare well with experimental SAXS data. A subset of the structures that best describe the experimental data are obtained

A closer look at the ensemble of all structures

Four structures of the entire ensemble with different R_g and X² were chosen for further analysis

MD Simulations for four different configurations

Configurational space sampled by different ensembles

Wide range of configurations are obtained in each ensemble. Ensemble of structures that best describes experimental data is highly flexible

Distribution of domains in different ensembles Frequency Frequency Frequency 100 120 Fab-Fc-Fab Angle (°) Fab-Fab Distance (Å) Fab-Fc Distance (Å) All structures Best structures MD simulations MD-1 MD-3

Conclusions

- Scattering was combined with molecular simulations to provide unique information about the structure of mAbs in solution
 - ✓ Tools to analyze SAS data with atomistic simulations are freely available in SASSIE <u>https://sassie-web.chem.utk.edu/</u> <u>sassie2/</u>
- The ensemble of structures that best describe the experimental data sample a wide configurational space; a range of Fab-Fc and Fab-Fab distributions are likely to occur
- Despite better computational resources, the wide range of configurations sampled by the NIST mAb cannot be solely obtained by MD simulations

Acknowledgments

NIST Center for Neutron Research (NCNR)

Joseph E. Curtis Susan Krueger Steven Howell James Snyder Yun Liu Zhiyuan Wang

Amgen

Arnold McAuley Nicholas Clark

ILL

Viviana Cristiglio

Emilie Poudevigne

Material Measurement Laboratory

NIST

NIST Biomanufacturing Initiative and IBBR

Travis Gallagher Michael Tarlov John Schiel John Marino Zvi Kelman Rob Brinson Alex Grishaev Marco Blanco

Malvern

Samiul Amin Neil Lewis Kevin Mattison and his team

UMD | M INSTIT BIOSCI BIOTE RESEA

UMD | NIST INSTITUTE FOR BIOSCIENCE & BIOTECHNOLOGY RESEARCH

NIST Center for

Neutron Researc

