The Path to Success for mRNA Vaccines

Jeffrey Ulmer, PhD President, TechImmune LLC Chief Scientific Advisor, Immorna Biotherapeutics

Agenda

- Overview of unmet vaccine needs
- Potential for mRNA vaccines to address unmet needs
- History of nucleic acid vaccines
- Lessons learned from COVID-19
- Challenges/opportunities for mRNA technology
- Future outlook

Current challenges in vaccines discovery and development

- Improving suboptimal vaccines (e.g., Tb, influenza)
- Developing new vaccines for unmet medical needs (e.g., HIV, RSV, cancer)
- Responding rapidly to emerging threats (e.g., SARS, Ebola, MERS, Zika, pandemic influenza)
- Streamlining the vaccines R&D process

Vaccine technologies

Vaccine Technology	Attributes	Limitations
Live organism (e.g., oral polio, measles)	 Launches live infection Induces broad, potent immunity (Ab, CMI) 	Potential safety risksNot always feasibleLong R&D timelines
Inactivated organism (e.g., rabies, hepatitis A)	 Increased safety over live vaccines Simpler R&D (attenuation not required) 	 Narrow immunity (Ab) Integrity of antigen Not always feasible
Subunit (e.g., hepatitis B, varicella zoster)	 Increased safety (low risk of virulence) More defined composition Focuses immunity on key antigens 	 Narrow immunity (Ab) Requires adjuvant Long R&D timelines

Impetus for nucleic acid vaccines:

> Combine positive attributes and avoid limitations of existing vaccine technologies

Current challenges in vaccines discovery and development

- Improving suboptimal vaccines (e.g., Tb, influenza)
- Developing new vaccines for unmet medical needs (e.g., HIV, RSV, cancer)
- Responding to rapidly emerging threats (e.g., SARS, Ebola, MERS, Zika, pandemic influenza)
- Streamlining the vaccines R&D process

Broad utility of mRNA in animal models

Disease Target	Species	Immunogenicity	Efficacy
RSV	M, CR, GP	Ø	M
CMV	M, CR, GP, R, NHP	Ø	Not tested
Rabies	M, R, NHP	Ø	N
Ebola	GP	Ø	M
Malaria	Μ	Ø	M
Rhinovirus	Μ	Ø	Not tested
Flu	M, F, NHP	Ø	R
HIV/SIV	M, R, NHP	Ø	Not tested
VEE	М	Ø	⊡
Zika	M, NHP	Ø	$\overline{\mathbf{M}}$
SARS-CoV-2	M, R, H	Ø	N
Yellow Fever	Μ	Ø	Not tested
Cancer	Μ	Ø	Ø
TB, GBS, GAS	М	Ø	Ø

M=mouse, CR=cotton rat, R=rabbit, GP=guinea pig, F=ferret, NHP=non-human primate (Rhesus), B=bovine, H=hamster 12/13/2022 Jeffrey Ulmer 6

Current challenges in vaccines discovery and development

- Improving suboptimal vaccines (e.g., Tb, influenza)
- Developing new vaccines for unmet medical needs (e.g., HIV, RSV, cancer)
- Responding rapidly to emerging threats (e.g., SARS, Ebola, MERS, Zika, pandemic influenza)
- Streamlining the vaccines R&D process

Circa 1918

saRNA vaccine response to 2013 H7N9 influenza outbreak

Nucleic acid enabled rapid responses to the clinic

Zika DNA vaccine (Inovio)*

PrM-E antigen sequence to phase I trials in ~4 months

SARS CoV-2 mRNA vaccine (Moderna)**

- SARS-CoV-2 genome posted on Jan. 10, 2020
- Spike antigen clinical trial material completed within 45 days
- First phase I participants vaccinated on Mar. 16, 2020

*Kudchodkar et al., Microbes Infect. 20, 676, 2018 **Corbett et al., Nature 586, 567, 2020. 12/13/2022

Current challenges in vaccines discovery and development

- Improving suboptimal vaccines (e.g., Tb, influenza)
- Developing new vaccines for unmet medical needs (e.g., HIV, RSV, cancer)
- Responding to rapidly emerging threats (e.g., SARS, Ebola, MERS, Zika, pandemic influenza)
- Streamlining the vaccines R&D process

Acceleration of vaccine R&D

mRNA vaccines

- Broad utility in animal models
- Rapidly growing scientific literature
- >90% efficacy in phase 3 clinical trials for SARS CoV-2
- Emergency Use Authorization for SARS CoV-2
- Billions of doses of vaccine administered

Pathway to success of mRNA vaccines

Scientific publications on DNA and mRNA vaccines

Foundational knowledge on nucleic acid vaccines paved the way to success

- Mechanism of action:
 - Location, kinetics of antigen expression in situ
 - Role of innate immune stimulation in adaptive immune response
- Safety:
 - Low risk of immunologic tolerance or autoimmunity
- Breadth of utility:
 - PoC for immunogenicity in animal models and humans
 - Licensure of nucleic acid products for animal health
 - Potential application to non-infectious diseases
 - Use of nucleic acid vaccines to facilitate screening and selection of antigens
- Technology readiness:
 - Established guidelines for Regulatory issues by WHO and National Regulatory Authorities
 - Established supporting industries for manufacture, raw materials and assessment of nucleic acid products

Lessons learned from SARS-CoV-2

- mRNA vaccines are safe and effective in humans
- Success was built on the foundation of decades of R&D on coronaviruses and nucleic acid vaccine technologies
- mRNA technology exemplified a "vaccines on demand" capability

Remaining challenges for mRNA vaccines

Challenges:

- Increasing thermostability
- Decreasing mRNA dose
- Decreasing reactogenicity
- Increasing potency/breadth of immunity
- Understanding mechanism of action

Key Enablers:

- mRNA engineering
- mRNA delivery
- Antigen design
- High quality manufacturing

Opportunity: mRNA vaccine engineering

Attributes of mRNA versus saRNA

	Conventional mRNA	saRNA
Advantages	Simplicity	Substantial amplification of RNA
	Relatively small size	Longer duration of transgene expression
	Functional with modified bases	Potency at low mRNA doses
	Enhanced stability vs saRNA	More amenable to co-expressing multiple ORFs
		Enhanced T cell responses relative to conventional mRNA
Limitations	Short-term expression of transgene	Complexity
	Lower magnitude of T cell responses relative to saRNA	Reduced stability
		Relatively large size: difficult to
		manufacture
		Susceptible to interference by innate
		anti-viral responses

Opportunity: mRNA delivery *pABOL polymer versus LNP*

Opportunity: mRNA delivery *pABOL polymer versus LNP*

Immunogenicity

Optimization through antigen design

NRP2

5'UTR 3'UTR
5'm⁷G-ppp-N
$$Ag_1 - Ag_2 - Ag_3$$
 $AAAAA_n \longrightarrow$

Issue	Solutions
Antigen conformation	Preservation of native conformation Co-expression of quaternary complexes
Antigen stability	Introduction of stabilizing mutations
Antigen composition	Identification of protective antigens (B/T cell) Co-expression of multiple antigens/epitopes

Opportunity: End to end high quality manufacturing

Process parameters:

<u>Sequence design</u>
UTRs
Poly-A tail
Nucleotides
GOI optimization
Cap structure

<u> DNA plasmid</u>
ermentation
inearization
Purification

IVT
High yield
Integrity
Enzymes
High Capping

Purification	<u> </u>
Process/product-	l
related impurities	
High recovery	

<u>Lipid</u> Novelty Efficacy Safety Stability Manufacturability

Encapsulation RNA protection mRNA purity Lipid purity Thermostability Safety Delivery efficiency Cell targeting Route administration

mRNA vaccines have potential to:

- Address unmet medical needs by induction of potent, broad immune responses
- Streamline vaccines R&D timelines and facilitate the rapid production of vaccines
 - Elimination of biologics in production
 - Generic methods to produce, purify and characterize product
 - Rapid response to newly emerging pathogens
 - Enable personalized medicines
- Disruptive innovation with potential for broad utility
 - Vaccines (preventive and therapeutic)
 - Cancer immunotherapy
 - Gene and cell therapy
 - Gene editing

Outlook for mRNA vaccines

- Copy and paste approaches to other disease targets may have limited utility
- Broad application of the mRNA technology will require innovation:
 - mRNA engineering
 - Novel delivery systems
 - Antigen design
 - High quality manufacturing
- Strong driving forces for success:
 - Large resource and intellectual capital being applied
 - Broad design space available
 - Potential for large return on investment
 - Major human health benefits