January 2025

Edita Botonjic-Sehic PhD

Faster, smaller, smarter: Empowering 5.0 BioSolutions Through Realtime PAT and Computational Controls

ReciBio Pharm

AGENDA

01 WHO WE ARE A Leading CDMO | Capabilities

02 WHERE WE'RE GOING

Integrated & Intelligent Manufacturing | Partnership with MIT

03 WHAT WE ARE UP TO

Leading PAT in xRNA manufacturing | Real time monitoring

3

A GLOBAL CDMO

5,200+

Employees worldwide at 3/09/24

Development and

manufacturing facilities

in Europe, Israel, USA

18

and India

100+

Supplying over one hundred markets around the world

1,000+

Every minute over one thousand people use one of our products

€ **1.3 bn** Net sales (FY23) 400+ Customers

FOCUS AND HARMONIZATION ACROSS SITES ENABLES CROSS-CONTINENT MANUFACTURING AND CENTERS OF EXCELLENCE

			USA	Portugal	Germany
	pDNA, xRNA, LNP	End-to-end, dual continent GMP manufacturing	•	•	
DALITY	Virus and Viral Vectors (AAV, LV, OV)	Virus experts, with a companion delivery option for DNA/RNA	•	•	•
	Microbiome and Live Biotherapeutics	Commercial FMT product & deep LBP development & GMP experience	•	•	
MO	Recombinant Proteins	Traditional protein scale-up & clinical scale manufacturing		•	
	ATMP Fill-Finish	Both automated & manual filling with best-in-class controls	•	•	•
S	PROCESS DEVELOPMENT	Rapidly scale for tox and clinical manufacturing + characterization	•	•	•
ICE	CGMP MANUFACTURING	Cross-modality technical expertise and quality systems in execution	•	•	•
ERVICE	REGULATORY SUPPORT	Clinical phase appropriate approaches to CMC	•	•	•
S	COMMERCIAL READINESS	Commercial systems with clinical toggles, fit for purpose	•	•	•
			RUO, Clinical, Commercial Ready	RUO, Clinical, Commercial	RUO, Clinical, Commercial Ready

ADVANCING INNOVATIONS ACROSS NEW AND EMERGING MODALITIES

RBP IS DRIVING NEXT-GENERATION RNA BIOMANUFACTURING WITH MIT THROUGH FDA CBER'S LARGEST GRANT

CORE PROJECT AMBITIONS

Increase **Speed** to the Patient

Continuous & Integrated production

Compatibility with Multiple xRNA Modalities and LNP Formulation

Scalability from bench top to pandemic scale

Flexible for capability swapping to next-gen technology

CORE PROJECT AMBITIONS

- Grant spearheaded by Peter Marks (CBER)
- \$82M over three years awarded to MIT
- \$62M sub-awarded to ReciBioPharm (2023)
- RBP deliverables focused on industry use

OUTPUT

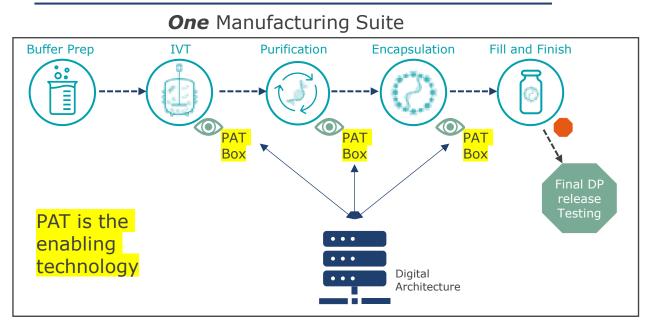
- cGMP manufacturing platform capable of 40g/day
- Digital PD simulator
- Process Analytics with predictive modeling, machine-to-machine communication, Real-Time Release
- Alignment with ICH Q13 guidance

A NEW APPROACH TO RNA MANUFACTURING IS CRITICAL TO ENHANCE PATIENT'S LIVES AND EXPAND THE REACH OF RNA THERAPIES

Costs and development times are hindering access to advanced therapies

- Biologics account for 46% of pharmaceutical spending but only 2% of all prescriptions
- Costs are too high to enable development of many orphan indications
- Even at Covid-scale vaccines cost \$2.70/100ug dose

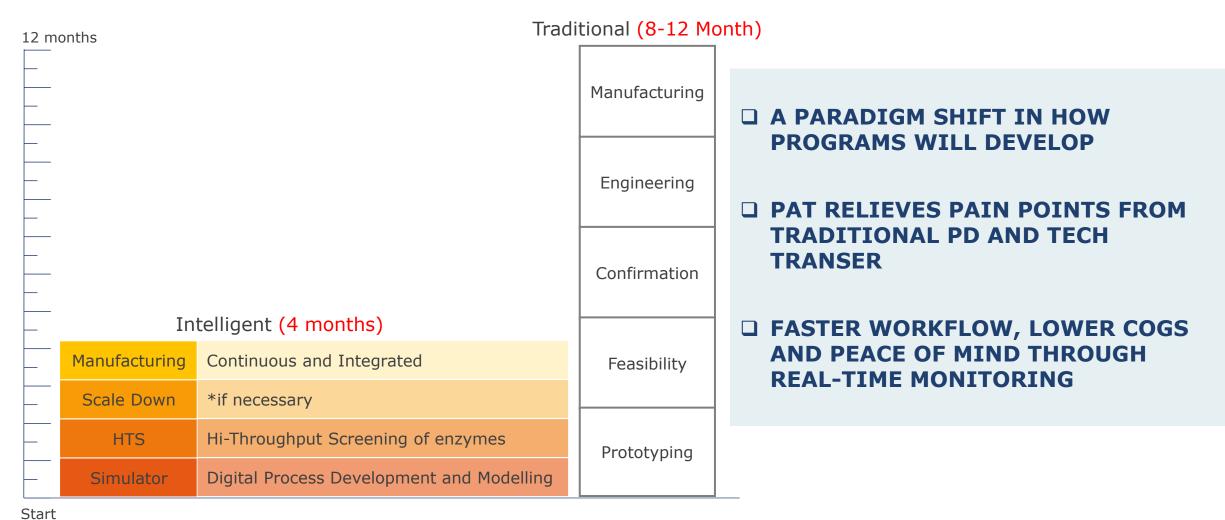
The speed and accuracy of this platform will enable access to advanced therapeutics and bring speed to vaccines in infectious disease outbreaks



CONTINUOUS PRODUCT FLOW | GREATER EFFICIENCY IN A SINGLE ROOM THROUGH PAT AND DIGITAL ARCHITECTURE

Fire Manufacturing Suites Prep Image: Constant of the product Quality and Release testing Oc Test Oc Test

- Process steps are gated by QC release
- Limited in-process knowledge → rework and manufacturing risk
- QC lab can be on a different floor, building or a 3rd party

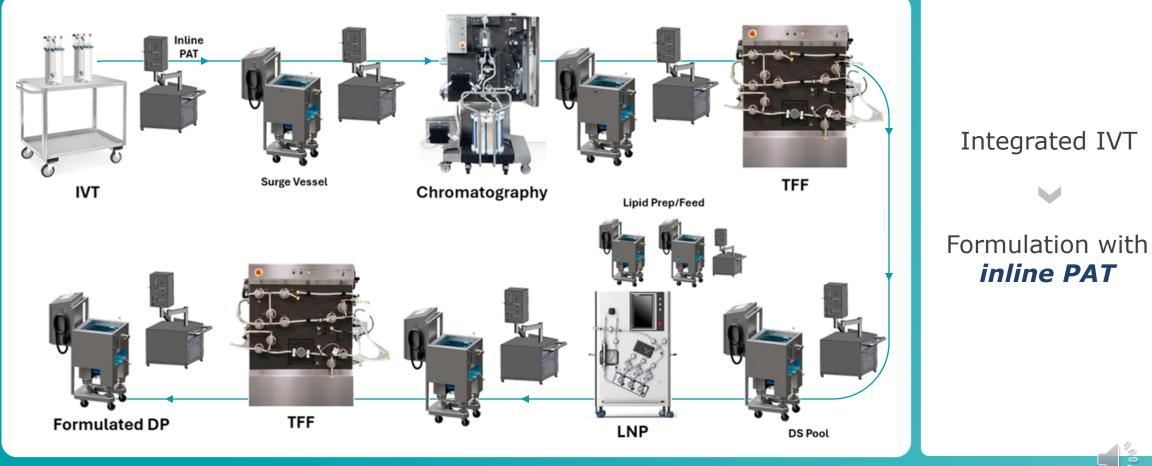

Continuous and Integrated Process

- Processes and QC testing occur in a single suite
- QC results are fed to automation control software
- Constant monitoring and real time product characterization

PAT OFFERS A MORE INTELLIGENT APPROACH TO PD | A HOLISTIC APPROACH TO TECHNOLOGY AND PROCESS DEVELOPMENT

IN THE FUTURE, THE USE OF PAT WILL OVERTAKE TRADITIONAL END-POINT QC TESTING

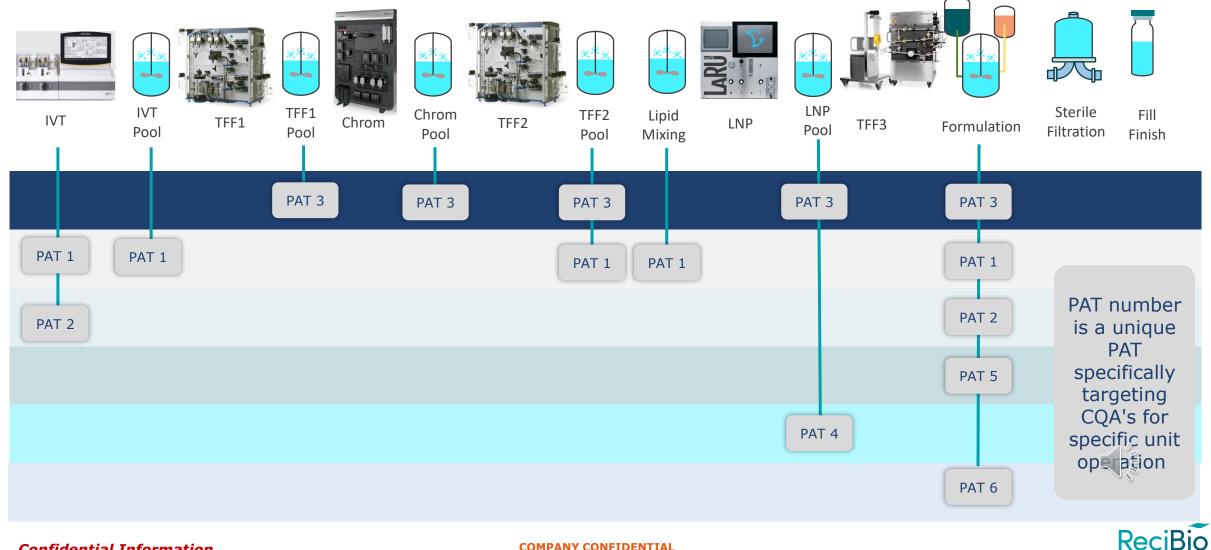
Shift In Employment Away From Traditional Testing

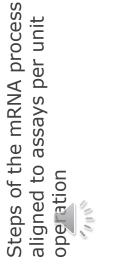


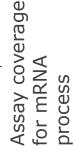
Pharm

WORKFLOW

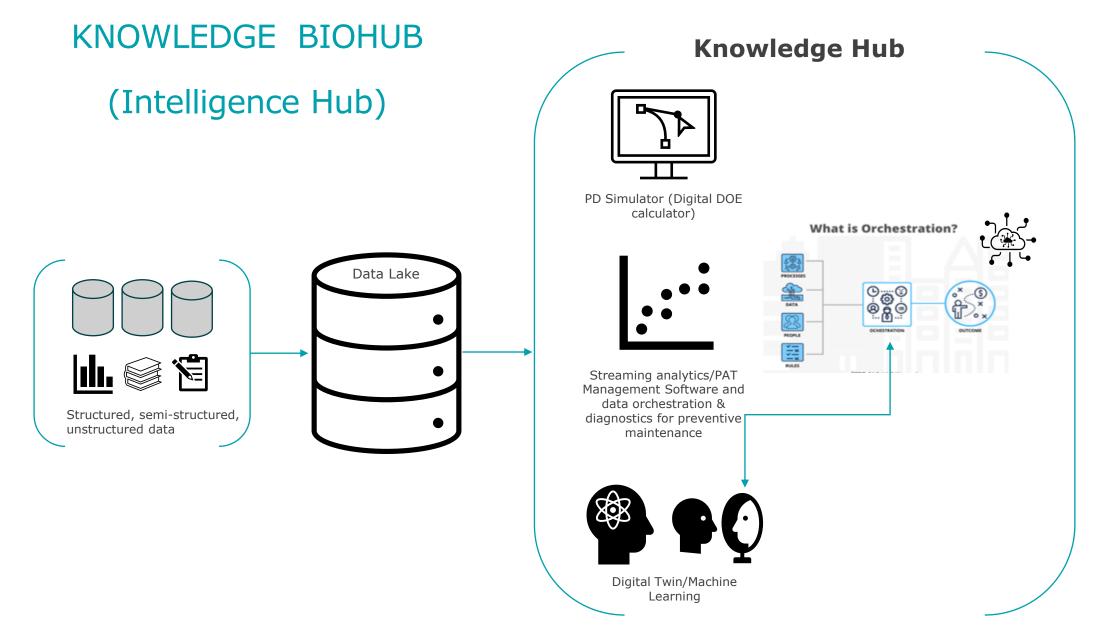
PROCESS


SMART MANUFACTURING OF XRNA THROUGH ADVANCED HARDWARE, SOFTWARE, AND PATENTED PROCESS ANALYTICAL TECHNOLOGIES


Images are for illustrative use only


PAT FOR CONTINUOUS TO SUPPORT DIGITAL TWIN DEVELOPMENT AND REAL TIME ANALYTICS

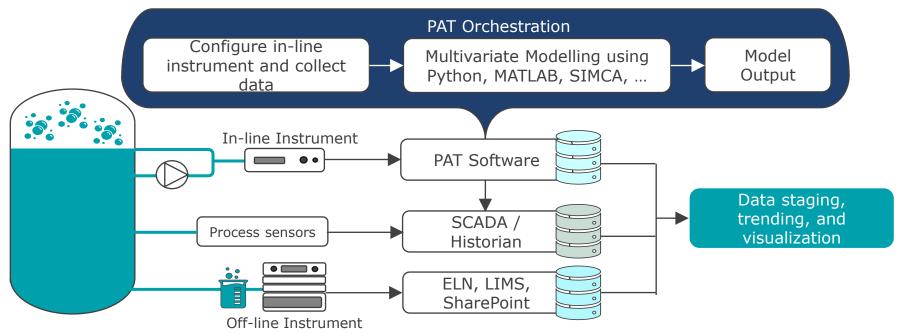
Pharm


ReciBio

IN-PROCESS PAT (ASSAY COVERAGE) / MOST CQA'S HAVE A PAT SOLUTION WITH THE OTHERS STILL BEING EXPLORED

In-line PAT (2025/2026)	Х	X	X	X	X		Х		Х	X	Х	X	Х	Х	X	Х	Х	Х			X	Х		Х	Х	Х		Х	X	X		Х	Х	Х		X	
	mRNA concentration - A260	mRNA concentration - Florescence	Encapsulation - Fiorescence	mRNA purity - CE (Frag A)	mRNA integrity - CE (Frag A)	mRNA intactness	percentage of fragment mRNA	aggregate quantitation	dsRNA content - Dot blot	LNP size, polydispersity - DLS	LNP Surrace cnarge, morphology, <- petential	Residual Total Protein - Florescence (NanoOrange)	Residual plasmid DNA - qPCR	Visual Appearance - USP<790>	Subvisible particles	Particulate matter	Sucrose concentration - LC/CAD	I otal lipid (Ionizable, PEG, DSPC, cholesterol)	Osmolality - mOsm/kg H ₂ O	Viscosity - USP<911>	Residual ethanol - GC	Residual solvents	Residual E.coli HCP - ELISA	Residual nucleotides, NTP - LC/MS	Hd	Bioburden, Sterllity - USP(1), (61), /71)	Endotoxin - USP(85)	5' Capping Efficiency - LC/MS	3' Poly(A) tail length, variant	Sequence Identification - Rumina,	IVT potency - cell-based assay	mRNA purity - LC, CE, Bioanalyzer?	mRNA content - UPLC and Rib green	mRNA/Lipid Mass (N:P ratio)	Extractable Volume	Container Closure integrity (CCIT)	Immunogenicity
IVT Reaction	x																																				
IVT Pool	х				Х				Х			х	Х										Х	Х		0	x	х	X	X							
IVT Pool Dilution	х																																				
TFF1 Pool	х				Х				Х			Х	Х										Х	Х		0	X										
TFF1 Dilution	x																																				
Oligo dT Pool	x			х	X				x			Х	0										Х	Х		0	0										
TFF2 Pool/Release DS	x			X	X	X		X	X			Х	Х	Х								Х	Х	Х	x	Х	x	x	X	X	0	X					
Lipid Solution																		Х																			
DS Dilution	х			Х																					х												
LNP Pool		Х	X							Х																	0							Х			
TFF3 Pool		Х	X							Х																х	0										
Post-Sucrose		Х	X							Х							Х		Х							х	x										
Bulk DP		Х	X		Х					Х				Х			Х								х	х	x										
Release DP		Х	x	x	x		х		х	Х	х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	x	х	x			Х	X	х	х	х	Х	Х	х

Confidential Information

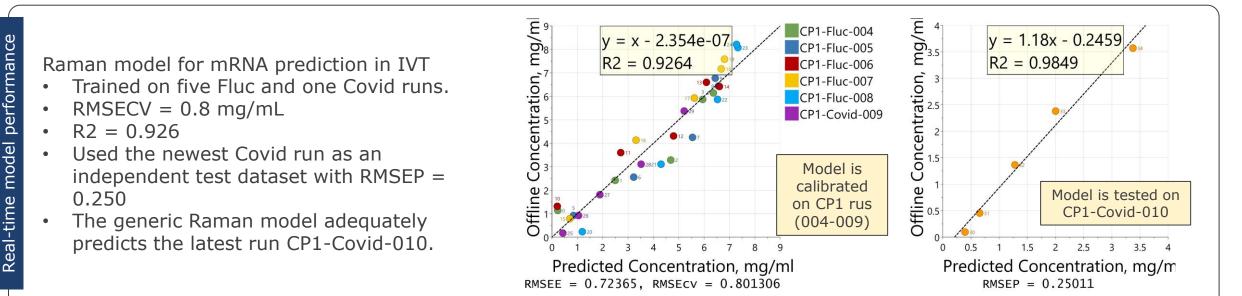


PAT

PAT SOFTWARE MANAGES INSTRUMENTS, DATA, AND MODELS IN REAL-TIME

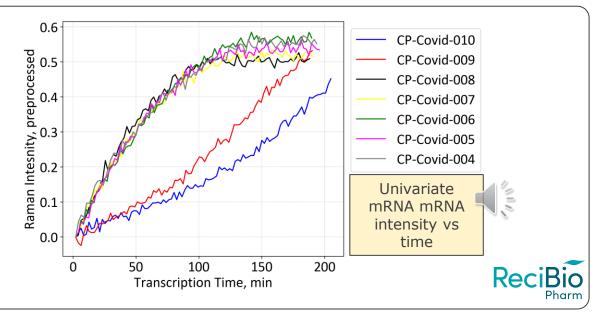
A bespoke PAT software solution reducing cost, allowing for modularity, and reducing time for Data Scientists.

Knowledge Hub/Simulator IVT Mechanistic Model and Simulator GUI (Advanced Window)


Simple Simulation Adv	ranced Simulation													
IVT Model Advanced Simulator!														
Process, Product and Tech	nology Selection		RNA Sequence Propertie	s or Sequ	uence				Ouputs (KPIs, e.g., CQAs)					
Reactor Type Batch v				F	RNA Sequence Prope	rties:		RNA Sequence:	Yield			90		
Product Type	Product Type mRNA V						9552		Integrit	y .		10		
			Adenine proportion				0.26	Import Sequence	Reaction	on Duration				
Capping Technology Co-transcriptional Technology			Cytosine proportion Guanine proportion				0.27	Paste Sequence	1					
Tailing Technology	Co-transcriptional	Ψ	Uracil proportion						Reaction Duration		5 Unit hr	•		
Inputs														
ATP	10	mM		•	RNAP				25	kU/mL		•		
CTP	10		•	PPiase				0.001	kU/mL	kU/mL				
GTP	10 mM			•	RNase Inhibitor				0.25	kU/mL		v		
ΨΤΡ	10		•	Spermidine				2	mM		T			
DNA	0.025		•	Dithiothreitol				10	mM		V			
Mg	25	mM			Temperature				37	degC		V		
Cap	4	mM		•	Stirring Rate				100 7.5	RPM		v		
Y-Left: N 9 8 7 6 6 5 4		Plot ATP UTP CTP GTP mRNA		NA Yield [Convers Convers	sion [%] 50.45			Δ		ot interface	for user	re		
	2 3 4 Time, [hour]				sion [%] 100.00			toi	intera simι	ct with the Ilation, and	results of	of al		

PAT

MODELLING


IVT

IVT RAMAN + PLS MODEL TO MONITOR MRNA CONCENTRATION

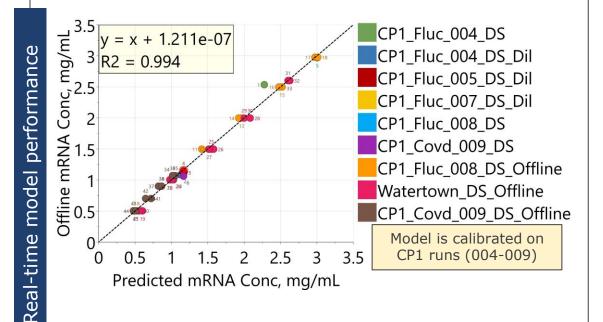
Univariate trending:

- Is used to determine mRNA growth in the current run vs previous runs (batch comparison).
- Determines transcription performance: pace and endpoint.
- Provides insight on if the reaction needs to continue or plateaued.
- Could be used to determine the cause of plateau if related to NTP concentration and shortage.

17

PAT

DS POOL

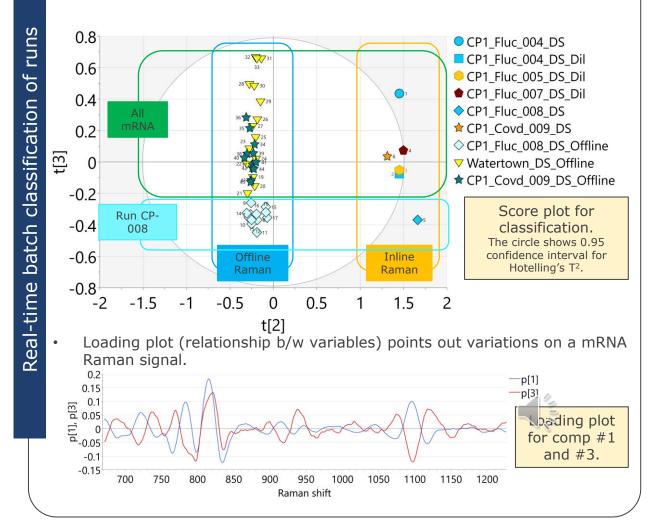

DS POOL + PLS MODEL TO MONITOR MRNA CONCENTRATION

Raman model for mRNA prediction in DS Pool:

- Calibrated on four Fluc, one Covid run, and three DOE • studies.
- RMSECV = 0.089 mg/mL.

MODELLING

R2 = 0.99.

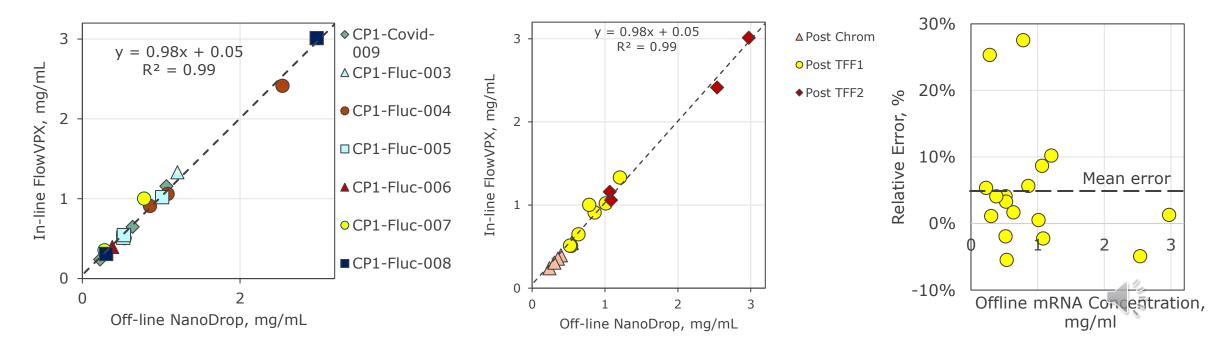

Model is tested on CP1-Covid-010:

RMSEP = 0.078 mg/mL

Measurement	Sample 1	Sample 2
Predicted Conc, mg/mL	1.26	1.04
Offline Conc, mg/mL	1.215	0.939

18 **Confidential Information** Classification of samples:

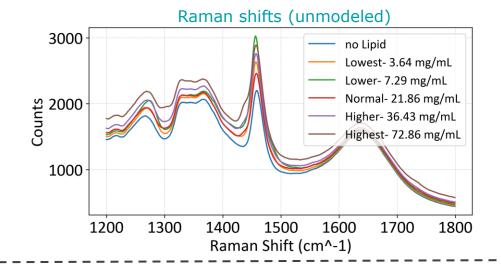
- PCA analysis was performed with 4 components.
- Raman classified runs and measurements based on variations such as concentration, instrument, and mRNA Raman signal (possibly secondary structure).

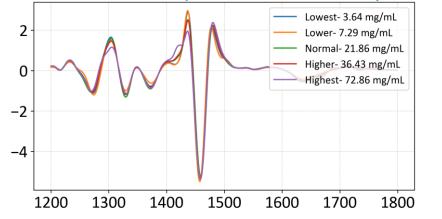


MODELLING

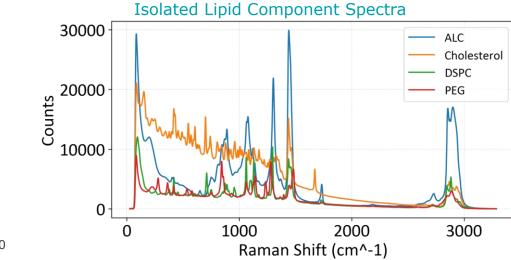
IN-LINE UV-VIS TO MONITOR MRNA CONCENTRATION IN DOWNSTREAM

In-line PAT is monitoring mRNA concentration Downstream with less than 5% relative error.


- 1. FlowVPX prediction showed similar accuracy for both Covid and Fluc without a change in the calibration.
- 2. FlowVPX successfully predicted mRNA concentration in all downstream samples.
- 3. Regression between the in-line and off-line measurement showed R2 =0.99 and relative error of 5%. By removing two samples that seems to be outlier, the relative error decreases to 2%.


WELL CHARACTERIZED MODELS ENSURE LNP FORMATION REMAINS CONSISTENT DURING PRODUCTION

• Monitor lipid component concentration during LNP production(mixing, TFF3, Drug Product formulation) via Raman


MODELLING

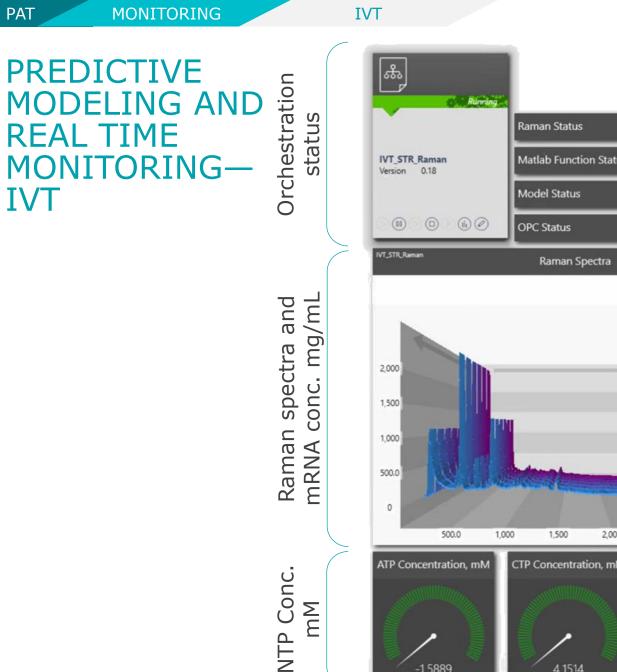
Raman shifts (filtered and normalized)

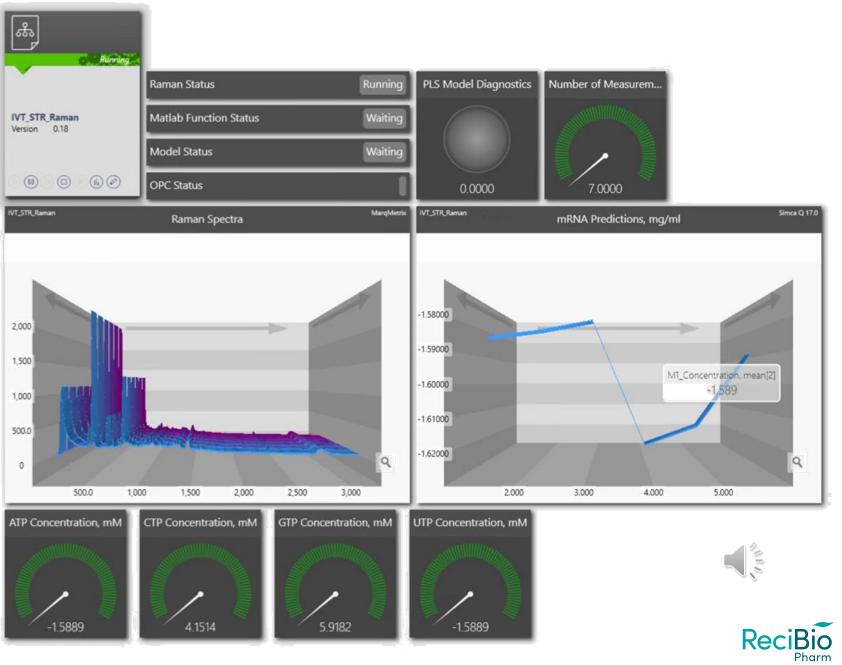
Optimal LNP ratio:

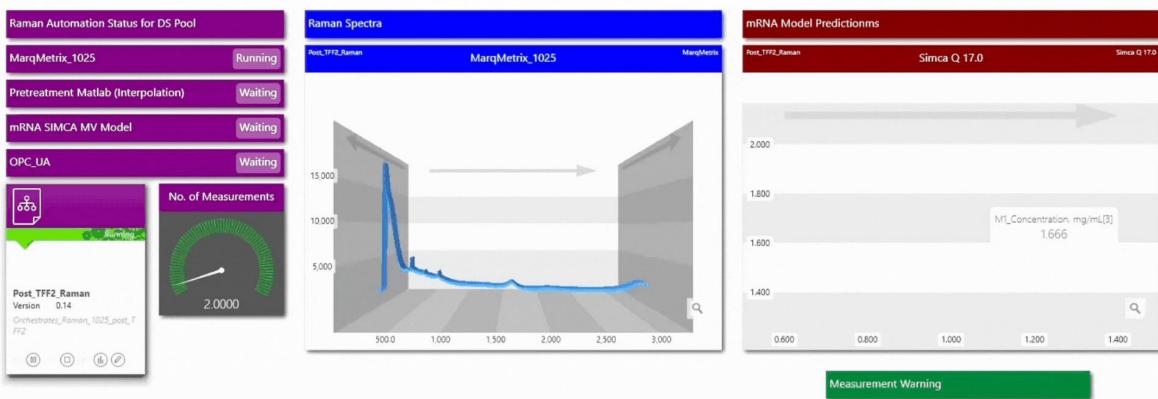
- 50% ALC
- 10% DSPC
- 35% Cholesterol
- 1.5% PEG
- 3.5% ETOH (by weight)

Area of focus: 1200-1800 cm-1 region

- Major mRNA signals occur at 700-1200 (812, 1097)
- DSPC: 949, 1700
- Cholesterol: 1440, 1673
- PEG: 1700

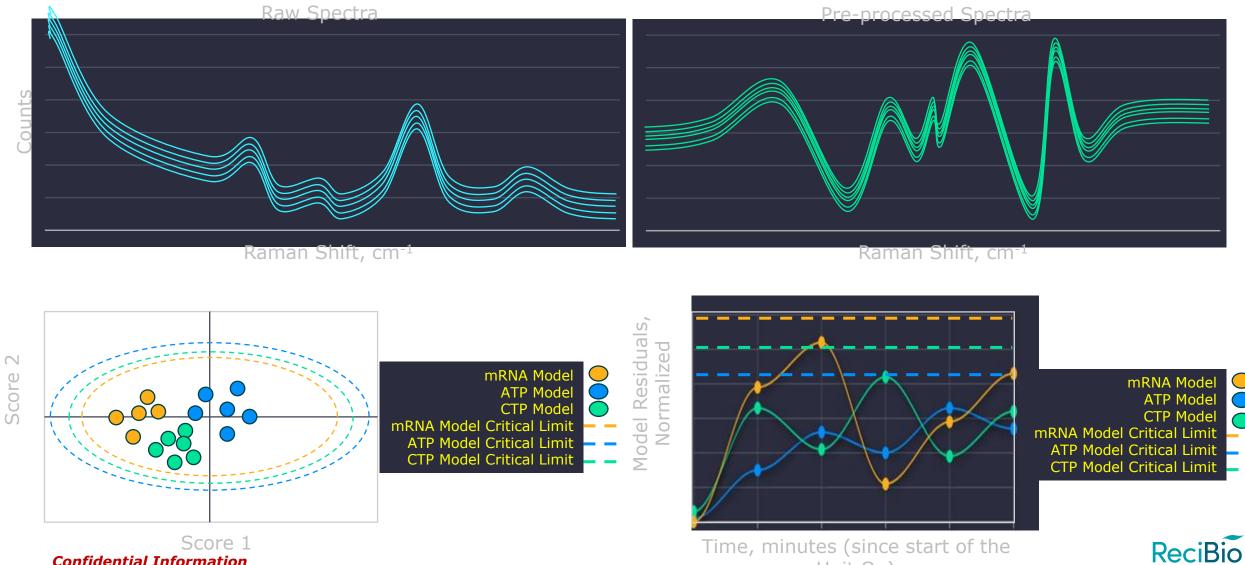

COMPANY CONFIDENTIAL




LNP

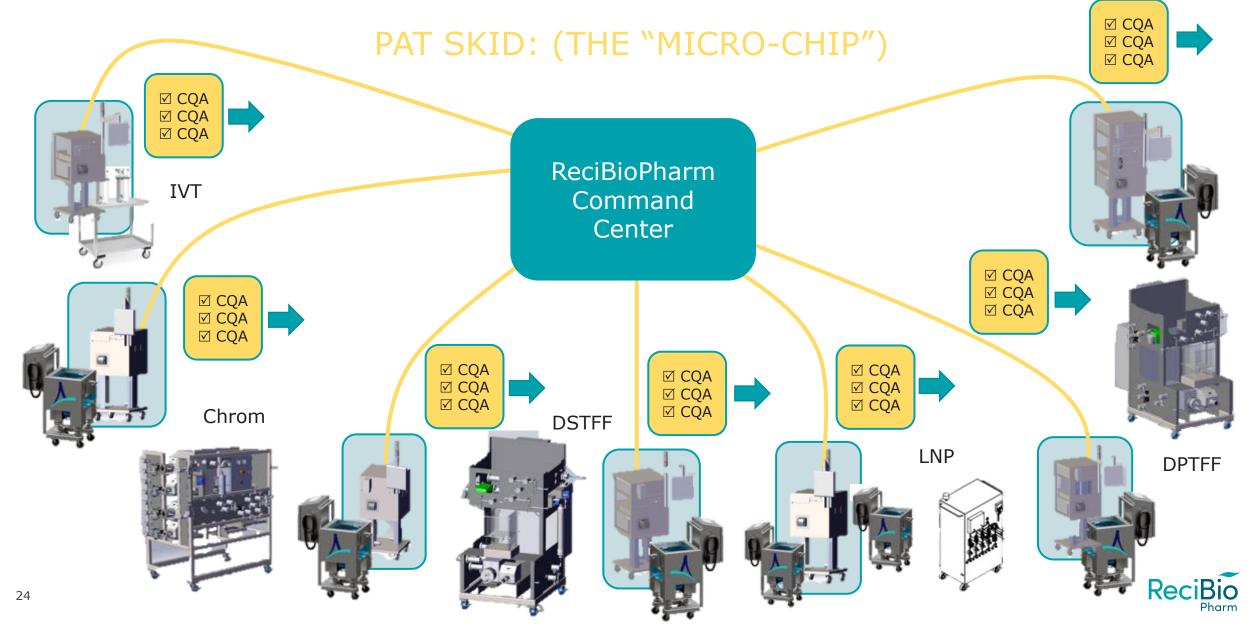
PAT

PREDICTIVE MODELING AND REAL TIME MONITORING—DS POOL



PAT and Digital

Advanced Dashboard


CP1-FLuc-008 | IVT | Raman | Multivariate PLS Model

Confidential Information

Pharm

CP2/PAT SKID DATA FLOW: REAL TIME MONITORING AND RELEASE

QUALITY | INTEGRATED CP PROCESS DEMONSTRATES EQUIVALENT PERFORMANCE FOR DS AND DP MANUFACTURING COMPARING TO BATCH MODEL

mRNA	Process .			mRNA	mRNA/LNP						
construct	model	Purity, A260/A280	mRNA integrity	dsRNA residue	Enzyme residue	DNA residue	mRNA integrity	EE%	Particle size	PDI	
Construct #1	Batch model	1.82	91%	<1%	<1 ug/mL	0.17 ng/mg	91%	93%	64 nm	0.02	
(2400nt)	Continuous model	1.91	93%	<1%	1.96 ug/mL	0.37 ng/mg	91%	94%	60 nm	0.05	
Construct	Batch model	1.74	89%	<1%	1.8 ug/mL	0.05 ng/mg	87%	90%	62 nm	0.03	
#2 (4500nt)	Continuous model	1.77	88%	<1%	1.2 ug/mL	0.22 ng/mg	n/a	88%	60 nm	0.04	

ACKNOWLEDGEMENT

Team would like to thank our development partner, MIT, and FDA for grant funding this development

Thank you for your attention!

ADVANCING TOGETHER

