Leveraging platforms to accelerate ADC formulation and drug product development

Karen Rutherford

CMC Strategy Forum North America 2024

Antibody Drug Conjugates

- Complex therapeutic increasingly
 used in cancer treatment
- Specificity of a monoclonal antibody AND potency of a cytotoxic agent
- Significant diversification in antigens targeted, cytotoxic payloads, linker technologies

How do ADCs work?

- Preferentially target payload to tumor site
- Cytotoxic payload targets: DNA, tubulin, topoisomerase 1 inhibitors
- May be used in combination with other agents
- Managing ADC-related toxicity is key

Marketed ADCs for targeted cancer therapy

ADCs are complex, heterogeneous molecules

- Post-translational modifications (e.g. glycosylation)
- Conjugation site (e.g. lysine, cysteine, ...)
- Linker stability (e.g. hydrolysis, drug exchange, photolysis, ...)
- Number of payloads (e.g., 2, 4, 8 ...)
- Payload properties (e.g. charged, hydrophobic, ...)

ADC development requires balancing stability of antibody, drug-linker, and payload

mAb CQAs

- Aggregation
- Fragmentation
- Charge variants
- Deamidation
- Oxidation
- Hydrolysis
- Disulfide Scrambling
- Conformational integrity

ADC-specific CQAs

- Free Drug Related Impurities (FDRI)
- Drug-to-antibody ratio (DAR)
- Unconjugated mAb
- Cytotoxicity

Leveraging platforms and prior knowledge to accelerate ADC development

Information from multiple molecules

Prior Knowledge

Understanding, conclusions established through analysis of historical data for similar processes and/or molecules

Changes / improvements

Antibody platform is consistent between common mAbs ADC platforms are often grouped by drug linker properties

ADC platforms can be further subdivided by challenges associated with each process step

ADC = antibody drug conjugate DAR = drug-to-antibody ratio DL = drug linker

Drug product development

Successful development depends on understanding how each aspect impacts and is impacted by different DP elements.

Leveraging platforms and assessing prior knowledge focuses development efforts

Formulation development and platform fit

- 1. Assess drug linker dependent prior knowledge
- Each ADC has unique liabilities under different conditions
- 2. Pre-formulation or early molecule assessment
- Is ADC fit to platform?
- Evaluate against experience with similar DL
- 3. Confirm formulation (mAb & ADC)
- Thermal stress forced degradation
- Freeze / thaw
- Light stress
- Agitation
- Clinical in-use

Light exposure controls to mitigate light-sensitive drug linkers

- Methionine oxidation
- Charge variants

Mitigations implemented for manufacturing, stability / storage, testing, and administration become platforms for ADCs with light-sensitive DL

Pfizer

Platform ADC dosage forms and strengths streamline FIH development

ADCs are lyophilized drug products

Linker hydrolysis is major degradation pathway

ADC cytotoxicity profile informs platform strength for FIH

- Intravenous administration
- Platform container closure system
- Platform fill volume
- Platform cake reconstitution

Robust ADC drug product manufacturing processes to support entire molecule lifecycle

Platform approach to DP processing steps enabled by:

- Formulation
- Dosage form
- Container closure system
- Strength

Leveraging Prior Knowledge:

Manufacturing material of contact compatibility assessments

- 2. Assess prior knowledge
- Availability and applicability (ADC type, study conditions, ...)

	Program	Materials Assessed						
		PETG	HDPE	316 L SS	PTFE	PC	PVDF	Silicone Tubing
	A	х	NT	Х	Х	NT	х	Х
	В	х	Х	Х	Х	Х	х	Х
	С	Х	Х	х	Х	х	NT	Х

3. Perform study

- Test new MOC or identified risk
- Leverage applicable prior knowledge to reduce testing/scope
- Update prior knowledge with new data

Pfizer

Platform approaches to ADC dose preparation and administration

- All ADCs are considered hazardous drugs (USP <800> "Hazardous Drugs-Handling in Healthcare settings"
- Closed system transfer devices (CSTDs) are required for dose preparation
- CSTD use commonly results in particles (visible and subvisible)
- Platform approaches that enable clinical flexibility and ensure patient safety

Summary

Platforms

 Common process, set of conditions, operation, approach that work for (most) similar molecules

ADC = antibody drug conjugate

Information from multiple molecules

Prior Knowledge

- Understanding, conclusions established through analysis of historical data for similar processes and/or molecules
- Develop applicability criteria
- Leverage to reduce scope of work / focus development

