Genesis of M4Q: A Regulatory Perspective

Ingrid Markovic, Ph.D.
Senior Science Advisor
CBER | US FDA
CBER ICH Quality Lead & M4Q FDA Topic Lead
Presentation Outline

- Broader FDA Modernization Efforts Influencing Regulatory Submission Modernization
- Vision for Future Regulatory Submission and Assessment
- ICH M4Q(R2) Update
Examples of FDA Modernization Efforts

Modernizing FDA’s Data Information Technology (IT) & Bioinformatics
- Substantial increase in bioinformatics submissions (genomic data & computational biology approaches) in past 4 years – many in pre-IND or early IND
- Cloud/cloud-based technologies to receive, process & store large volumes of data
- Critical to advance novel technologies and products (e.g., cell and gene therapy products, vaccines, live biotherapeutics)

Advancing Utilization and Implementation of Innovative Manufacturing
- PDUFA VII commitments geared to facilitate adoption of innovative manufacturing technologies (e.g., best practices, case studies, regulatory submission strategies leading to better understanding of barriers to adoption of Adv Mfg.)
- CBER CATT & CDER ETT- discussion platforms for novel tech at any stage of development

Investing in Cell and Gene Therapy Programs
- Strengthening staff capacity to support review of cell and gene therapy products
- Development of regulatory tools and scientific technologies, external collaboration and outreach, & enhancing communication
- Harmonization, enhancing regulatory consistency, review standards, training
Drivers & Vision for Future Regulatory Submission and Assessment
Application Assessment Challenges

External Challenges

• Volume & complexity of new applications
• Accelerated timelines
• User fee program expectations
• Commissioner, Congress, the pharma industry, and the public expectations
• Complexity of Biological Products under CBER purview

Internal Challenges

• Regulatory assessments traditionally based on freestyle narratives (or unstructured text) and summarization of application information with cut/paste of data tables.
• Cumbersome knowledge sharing and knowledge management
• Potential for subjective assessment based on the assessor’s expertise and knowledge at hand
Increase in submission size and complexity with accelerated timelines
Current CMC Data Submissions and Review

Sponsor/Applicant

eCTD

Gateway Extract

Efficacy
Quality
Safety
Validate

PDF

Reviewer/Assessor
Structured CMC Data Submission
Future Data Submissions and Review

GOAL: Move away from the narrative information, towards structured data to capture & manage knowledge
Building Blocks Enabling Digitalization of Regulatory Submission

- Paper to E-Submission M4Q(R1)
- M4Q(R2)
- PQ/CMC KASA IDMP/SPOR SPQS
- Health Authority Cloud Server
ICH M4Q(R2) Update
What is M4Q Designed to Do?

- Globally harmonized content and organization of quality information in Common Technical Document (CTD)/eCTD
 - Module 2.3 Quality Overall Summary (QOS)
 - Module 3 Quality
- M4Q(R1) was a substantial improvement compared to the prior state with range of submission formats along with a shift from paper to electronic
M4Q(R1) Implementation

2001
- FDA, United States - August 2001
- HSA, Singapore - January 2003
- EC, Europe - March 2003
- MHLW/PMDA, Japan - July 2003
- Swissmedic, Switzerland - July 2004
- TITCK, Turkey - December 2006

2012
- Health Canada, Canada - June 2012
- TFDA, Chinese Taipei - November 2012

2016
- MFDS, Republic of Korea - June 2016

2018
- NMPA, China - February 2018

2019
- ANVISA, Brazil - August 2019

https://www.ich.org/page/ctd
ICH Elected a Step-wise approach to Modernize Regulatory Submission

ICH M4Q(R2) will define content and organization of information in Module 2 and Module 3.

When M4Q (R2) reaches step 2, the work on Structured Product Quality Submissions (SPQS) will be begin.

Therefore, M4Q(R2) will think ahead but not work on developing data models for structured data.
What are perceived problems?

Capture information related to complex products and new therapeutic modalities inc. ADCs, vaccines, ATMPs/CGT

Better align with modern quality guidelines Q8-Q14 that have been developed since ICH M4Q(R1)

Leverage emerging tools & concepts inc. Adv. Mfg., CM, data tools, bioinformatics, etc.

Better use of prior knowledge and risk-based principles

Improved efficiency and effectiveness of regulatory submission and assessment
Benefits of Revised M4Q

M4Q(R2) guideline would streamline patients’ and consumers’ access to lifesaving therapies
M4Q(R2) Establishes Module 2 as the Basis for Regulatory Assessment, Supported by Module 3

Module 2
- Basis for regulatory assessment, Risk-based approach
- Comprehensive overview of the product and its components
- Product and manufacturing process understanding and overall control strategy
- Lifecycle management

Module 3
- Information and data repository incl. reports, data, protocols, descriptions
- Prepared for SPQS
- Supporting emerging concepts

- M4Q(R2) should enable efficient, effective, patient-centric and globally harmonised submissions, assessment and life cycle management, and minimize dossier redundancies
- Suitable for various types of submission and product modalities

Links for further details
Module 2

• M2 should provide a sufficiently comprehensive overview of the pharmaceutical product and its components, including the Quality Target Product Profile (QTPP), manufacturing process, and overall control strategy.
• It should provide a basis for an efficient and effective regulatory submission and assessment, and product-life cycle change management.
• M2 may also support reliance-based approval.
• M2 presents and discusses the critical information, thereby providing a common understanding of the product and manufacturing process factors determining quality as well as providing product quality benefit-risk considerations.
• It may also include Product Life Cycle Management tools as per ICH Q12 guideline.
• M2 may guide the reader how the information is presented throughout the quality part of the dossier.
Module 3

- M3 serves as the information and data repository that supports M2 and is presented in a globally standardized/harmonized format.
- M3 should lay the foundation for the Structured Product Quality Submission.
- M3 may comprise detailed information complementary to M2, such as reports, data, protocol, or method descriptions and should be organised in a suitable format for easy access, analysis, and knowledge management.
- Both M2 and M3 should facilitate inclusion of information supporting emerging concepts, such as advanced manufacturing, IT/software components, digitalization, data management, artificial intelligence/machine learning, and advanced analytical tools, to support regulatory assessment.
Points to consider for new CTD organization as M4Q(R2) work progresses

- **Transformative change** compared to the current state how information is presented and organized
- New organization needs to support **initial approval** and **lifecycle management**
- Needs to work for all product types from **generic products** to **complex C>s**, including **devices**
- Be able to accommodate products relying on **DMF**
- Capture Q12 and non-Q12 applications
- Needs to be at the right **level of detail**
- May facilitate **reliance-based review/approval**
Mapping the current M4Q sections to the new structure (an example)
FDA Support of ICH M4Q (R2)
Big Thanks!

FDA M4Q(R2) Team
- Lawrence Yu (Rapporteur)
- Larisa Wu (Rapporteur Supporter)
- Rakhi Shah (FDA Deputy Topic Lead)
- Ingrid Markovic (FDA Topic Lead)

Rapporteur
Dr. Lawrence Yu (FDA, United States)

Regulatory Chair
Mr. Antonius (Ron) Johannes van der Stappen (EC, Europe)

Experts

<table>
<thead>
<tr>
<th>Organization</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANVISA, Brazil</td>
<td>Ms. Ellen Nogueira</td>
</tr>
<tr>
<td>BIO</td>
<td>Ms. Kathy Lee</td>
</tr>
<tr>
<td>EC, Europe</td>
<td>Ms. Klea Tibo</td>
</tr>
<tr>
<td>EFPIA</td>
<td>Dr. Henrik Kim Nielsen</td>
</tr>
<tr>
<td>Global Self-Care Federation</td>
<td>Ms. Christelle Allens-Müller</td>
</tr>
<tr>
<td>IFPMA</td>
<td>Ms. Shells Inada</td>
</tr>
<tr>
<td>JPMA</td>
<td>Mr. Hiroki Ro</td>
</tr>
<tr>
<td>MHLW/PMDA, Japan</td>
<td>Dr. Yusuhisa Kishida</td>
</tr>
<tr>
<td>PhRMA</td>
<td>Mr. Rodrigo Ballesta</td>
</tr>
<tr>
<td>TFDA, Chinese Taipei</td>
<td>Ms. Yi-Ying Lin</td>
</tr>
<tr>
<td>APIC</td>
<td>Dr. Selima Jurce</td>
</tr>
<tr>
<td>CDSCO, India</td>
<td>Dr. Rubina Rose</td>
</tr>
<tr>
<td>EDA, Egypt</td>
<td>Dr. Sam Shatat</td>
</tr>
<tr>
<td>FDA, United States</td>
<td>Dr. Ingrid Markovic</td>
</tr>
<tr>
<td>Health Canada, Canada</td>
<td>Dr. Hugo Hamel</td>
</tr>
<tr>
<td>IGBA</td>
<td>Mr. Jesler Momoebin</td>
</tr>
<tr>
<td>MFDS, Republic of Korea</td>
<td>Dr. Naroo Kang</td>
</tr>
<tr>
<td>NMPA, China</td>
<td>Dr. Yonghui Liu</td>
</tr>
<tr>
<td>SFDA, Saudi Arabia</td>
<td>Mr. Abdullah Ak bandwidth</td>
</tr>
</tbody>
</table>