

Expectations on potency assays for antibody-based novel modalities – a regulatory perspective

Nailing Zhang, Ph.D. Office of Biotechnology Products OPQ/CDER/FDA

> CMC Strategy Forum July 19, 2022

Pharmaceutical Quality

A quality product of any kind consistently meets the expectations of the user.

Pharmaceutical Quality

A quality product of any kind consistently meets the expectations of the user.

Drugs are no different.

FDA

Patients expect safe and effective medicine with every dose they take.

FDA

Pharmaceutical quality is assuring *every* dose is safe and effective, free of contamination and defects.

It is what gives patients confidence in their *next* dose of medicine.

Disclaimer

Please refer to any cited guidance, as this talk only refers to them at a high level. Specific regulatory issues need to be addressed with the relevant assessment team.

□ Regulations of potency for biologics

- Connecting mechanisms of action (MOAs) and potency assays
- Expectations on potency assays at different development stages

□ Regulations of potency for biologics

Connecting mechanisms of action (MOAs) and potency assays

Expectations on potency assays at different development stages

Potency Definition and Regulations

- PHS Act section 351 (42 USC 262):
 - "...approve a biologics license application...on the basis of a demonstration that:

 (I) the biological product that is the subject of the application is safe, pure, and **potent**; and
 (II) the facility in which the biological product is manufactured, processed, packed, or held meets standards designed to assure that the biological product continues to be safe, pure, and **potent**;"
- <u>21 CFR 600.3(s)</u>:

"The word potency is interpreted to mean **the specific ability or capacity of the product**, as indicated by appropriate laboratory tests or by adequately controlled clinical data obtained through the administration of the product in the manner intended, **to effect a given result**."

• <u>21 CFR 610.10:</u>

"Tests for potency shall consist of either in vitro or in vivo tests, or both, which have been **specifically** designed for each product so as to indicate its potency in a manner adequate to satisfy the interpretation of potency given by definition in § 600.3(s) of this chapter."

Additional Guidance

- ICH Q6B: Specifications for Biotechnology Products:
 - Potency: The measure of the biological activity using a suitably quantitative biological assay (also called potency assay or bioassay), based on the attribute of the product which is linked to the relevant biological properties.
 - Drug substance specifications: appearance and description, identity, purity and impurities, **potency**, quantity.
 - Drug product specifications: appearance and description, identity, purity and impurities, **potency**, quantity, general tests, additional testing for unique dosage forms.
 - "Often, for complex molecules, the physicochemical information may be extensive but unable to confirm the higher-order structure which, however, can be inferred from the biological activity."

Regulations of potency for biologics

Connecting mechanisms of action (MOAs) and potency assays

Expectations on potency assays at different development stages

Common MOAs and Potency Assays for Therapeutic Antibodies

www.fda.gov

FDA

General Considerations for Potency Assays

Potency assays should:

- Reflect the proposed MOA(s)
- Quantitatively measure biological activity(ies) that is/are relevant to clinical efficacy
- Be suitable for quality control environment
- Be stability-indicating
- Account for all biologically active constituents of the product e.g., bispecific antibodies (BsAb), antibody-drug conjugates (ADC), other antibody-fusion proteins (cytokines, enzyme, etc.)

BsAb Products

- Fab-mediated antigen binding (two or more antigens)
- Fc-mediated effector function
- Other constituents (e.g., anti-HSA single domain antibody)

Register AC, Tarighat SS and Lee HY, Int J Mol Sci. 2021 May 19;22(10):5350

ADC Products

- Antigen binding assay: Demonstrates a critical step in the ADC MOA.
- Cell-based cytotoxicity assay: Demonstrates the ADC MOA, including target binding, internalization, drug release, and cell killing.
- Bystander effect: If the bystander effect is a proposed MOA for an ADC, bystander effect activity should be characterized.
- Effector function.

www.fda.gov

https://njbio.com/antibody-drug-conjugates/

Other Antibody-Fusion Proteins

- Fusion protein portion
 - Receptor extracellular domain
 - Cytokine
 - Enzyme
 - Peptide
- Antibody portion
 - Fab
 - Fc

https://bioprocessintl.com/manufacturing/monoclonalantibodies/immunoglobulin-fc-fusion-proteins-part-1-design-manufacture/

Hutmacher C and Neri D, Adv Drug Deliv Rev. 2019 Feb 15;141:67-91.

www.fda.gov

17

Common Issues in IND Submissions

- Potency assay(s) only reflect part of the MOAs.
 - No potency assays for effector functions, where effector functions are part of the MOAs.
 - No cytotoxicity assay for ADC products.
- For BsAb products, is binding to both antigens at the same time required for efficacy?
 - When required, e.g., a BsAb that is designed to bridge two target cells, potency assay(s) that reflect simultaneous engagement of both targets are preferred.
 - When not required, e.g., a BsAb that targets two soluble cytokines, two independent potency assays can be developed to measure the engagement of each target individually.

Example Comments for INDs

For a bispecific antibody with effector function as part of MOA:

It appears that besides the Fab region mediated binding and inhibition of xxxxx activity, the **Fc region mediated effector function** is also part of the proposed mechanisms of action (MOA) and therefore **should be monitored as part of the quality control strategy**....a potency assay measuring the effector function should be included in xxxxx release and stability specifications.

<u>A comment may be communicated regarding additional control of effector function</u> by a release specification for drug substance to assess the glycan profile:

...This release test generally provides control over levels of **individual and total afucosylated glycans(including high mannose) and galactosylation**, which are generally accepted/known to impact binding to FcγRIIIa and C1q, respectively.

Regulations of potency for biologics

Connecting mechanisms of action (MOAs) and potency assays

Expectations on potency assays at different development stages

Phase-appropriate Potency Assay Development

FDA

Example Comment for INDs

For IND submissions with only binding assays for release and stability:

While the current potency assay (i.e., antigen binding ELISA) is acceptable for initiating the proposed phase 1 clinical study, **cellbased bioactivity potency assay(s)** that reflects the mechanism(s) of action of xxxxx should be developed and incorporated into drug substance and drug product lot release and stability testing **prior to entry into a major efficacy trial. Sufficient retain samples** should be appropriately stored for use **in the bridging studies** to support the development of a new potency assay and ensure lot-to-lot consistency with regard to potency.

Example Comment for INDs

For a bispecific antibody with effector function as part of MOA:

Surrogate assays (e.g., binding to FcγRIIIa or C1q) may be sufficient to initiate the IND, but we encourage you to introduce **a functional assay** as soon as possible and, where necessary, bank samples in order to ensure lot-to-lot consistency with regard to potency and support a future specification or control strategy (i.e., an in-process test with reject limit).

Although a cell-based bioassay is recommended to assess and control potency, it **may be possible to justify the continued use of a surrogate assay** during development for activities such as lot release, provided **the surrogate assay is demonstrated to be suitably sensitive to product variants and modifications expected to affect potency**, e.g., through a direct comparison to the assay(s) developed to reflect the in vivo mechanism of action. We recommend that you collect adequate data from the cell-based assay(s) during development to inform the control strategy during development and in the license application."

ADC Products

- Both antigen binding and cell-based cytotoxicity assays are generally expected to be included in the drug substance/drug product release and stability specifications in the original IND submission.
- If a cell-based cytotoxicity assay is not available as a potency assay initially, it should be at least included in ADC characterization. In addition, potency should be controlled by additional attributes/methods, e.g., by a well-controlled drugto-antibody ratio (DAR).
- The lack of antigen binding assay for drug substance and drug product may possibly be justified with supporting data.

https://njbio.com/antibody-drug-conjugates/

www.fda.gov

TD)

Take-Home Messages

 Development of potency assays should be phase-appropriate **FDA**

Acknowledgement

- Maria-Teresa Gutierrez-Lugo
- Susan Kirshner
- Ian McWilliams
- Frances Namuswe
- Massod Rahimi
- Leslie Rivera Rosado
- Marjorie Shapiro
- Wen Jin Wu

