

## Using Prior Knowledge for Setting the Shelf Life of Biologics Products

CASSS CMC Forum 2022

Boris Zimmermann, Senior Director Global Quality Control Genentech, A Member of the Roche Group

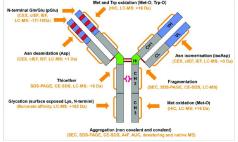
#### Table of contents



 Insights from the evaluation of an IgG1 mAb product portfolio by an Arrhenius-based model

 Experience with shelf-life modeling for a COVID-19 Monoclonal Antibody "Cocktail"

3. Conclusion




## Insights from the evaluation of an IgG1 mAb product portfolio by an Arrhenius-based model



### Typical utilization of stability data for Biologics

- Stability data and a stability program is important ensures the product is stable (safe and efficacious) until retest period or shelf life
- Stability data are generated in accordance with ICH Q1's/Q5C launch and post-marketing
- Limited use of prior knowledge, enhanced product-scientific understanding and risk-based approaches - real-time data define the expiry date with some exceptions
  - Post-marketing comparability for drug substance
  - Limited acceptance from health authorities world wide
- Potential of enhanced product-scientific understanding not really utilized especially for well established commercial products for post-marketing activities



## Evaluation of an IgG1 mAb product portfolio





- Main motivation is to explore whether Arrhenius-based kinetics can be used for accurately predicting the stability of mAb's
- Robust real-time stability prediction by using stability data from accelerated conditions and stress-conditions
- Demonstrate how predictive stability can be used to estimate the shelf-life of biologics
- Five (5) commercial mAbs products
- Focus on size and charge quality attributes prone to changes



#### Data quality

- Enough data with the right data granularity
- Three (3) temperatures above real-time temperature with ≥ four (4) data points per temperature to ensure
  - Degradation reaction follows a linear trend (for use of a linear model)
  - Arrhenius manner, i.e. the relationship between inverse of temperature is proportional to the log of reaction rate
- Quality attributes with small absolute change with two (2) decimal places size
- Quality attributes with bigger absolute change with one (1) decimal place charge
- At least four (4) data points per individual batch



### Modeling

Arrhenius equation

$$k_{\rm T}$$
 = A $e^{-Ea/RT}$ 

kT is the degradation rate, A is the Frequency factor, Ea is the Activation energy for the reaction, R is the universal gas constant and T is the absolute temperature in Kelvin

- Why Arrhenius?
  - Allows usage of stability data collected at accelerated and stress conditions to predict how a DP will behave at storage conditions
  - Simple model where limitations could be learned by utilizing product-scientific knowledge/prior knowledge



Svante Arrhenius in 1889



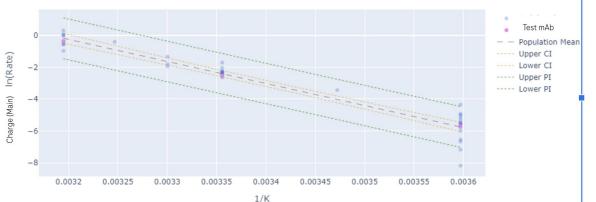
## Results - Arrhenius fit for prediction (R<sup>2</sup>)

In order to ensure Arrhenius behaviour  $R^2$  score is used.

| mAb | Size (Main) | Size (HMW) | Charge (Main) | Charge (Acidic) | Charge -<br>specific peak A | Charge - specific<br>peak B |
|-----|-------------|------------|---------------|-----------------|-----------------------------|-----------------------------|
| 1   | 0.72        | 0.86       | 0.99          | 0.99            | n/a                         | n/a                         |
| 2   | 0.86        | 0.93       | 1             | 1               | n/a                         | n/a                         |
| 3   | 0.99        | 0.99       | 0.99          | 0.99            | n/a                         | n/a                         |
| 4   | 0.99        | 0.99       | 0.99          | 0.99            | n/a                         | n/a                         |
| 5   | 0.99        | 0.99       | 0.99          | 0.99            | 0.99                        | 0.99                        |

Consistently high R<sup>2</sup> for all charge quality attributes

• Two (2) out of five (5) mAbs with low R<sup>2</sup> scores for size quality attributes indicating limitations




9

#### **Results - Shelf life prediction**

- 1. Use all mAb data per quality attribute to calculate the Arrhenius model fit and create the prediction and confidence intervals beside for the one (1) test mAb to be verified
- 2. Validate that rates of test mAb fit within the prediction interval and if so, use the worst 5°C reaction rate from the prediction to calculate the degradation profile for the product to predict the shelf life.
- 3. Compare this predicted shelf life against the commercial shelf life based on real-time data.

| mAb | Shelf-life | Shelf-Life (PI) | Difference |
|-----|------------|-----------------|------------|
| 1   | 24m        | 33m             | 38%        |
| 2   | 24m        | 25m             | 4%         |
| 3   | 36m        | 36m             | 0          |
| 4   | 30m        | 36m             | 20%        |
| 5   | 24m        | 37m             | 54%        |





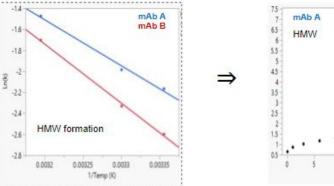
### Summary

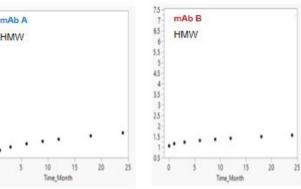
- Stability profile of a mAb must be extensively studied and clearly defined, historical data prerequisites are given (incl. accurate analytical methods)
- Arrhenius behavior of an individual mAb can be ensured by high R<sup>2</sup> scores
- Size quality attributes (e.g. HMWs) are known to have complex degradation pathways which limits the usage for the model for a few mAbs
- Long-term stability prediction of individual mAbs based on multi-mAbs stability data from accelerated and stress conditions and fitting the data with Arrhenius-based model is possible
- Model refinement in progress



# Experience with shelf-life modeling for a COVID-19 Monoclonal Antibody "Cocktail"




#### **Motivation**


- COVID-19 emergency highlighted the need for new/different stability and shelf-life approaches for biotherapeutics (e.g., monoclonal antibodies) beyond ICH Q1 series and Q5C
- Pre-pandemic situation:
  - (Prior) Knowledge- and risk-based approaches are commonly used to establish the control system of biotherapeutics
  - Stability and shelf-life for biologics expected to be based on long-term data at storage temperature (real-time data)
  - Statistical tools and well characterized stability behavior for MAbs established
- Pandemic situation: (very) limited R&D & representative stability data for specific project, real-time data just about to be started



#### Approach

- Predicted shelf-life of 2 MAbs through modeling based on accelerated/stress stability data, extended characterization, and Arrhenius-Theory
- Stability data compared to similar MAbs (IgG1) and formulations
- MAb A/B-High Molecular Weight (% HMW) aggregate formation modeling, 2-8C, 24 months (verification by real-time, long-term data ongoing)







### Commercial shelf life of Covid-19 antibody "cocktail"

24m requested based on modeling + data package

| Health Authority | DP shelf life | Data package                                                            | Comments                                   |  |
|------------------|---------------|-------------------------------------------------------------------------|--------------------------------------------|--|
| Α                | 24m           | 3m PPQ initially<br>9m clinical (1) accepted                            |                                            |  |
| В                | 24m           | 3m PPQ initially<br>6m PPQ during review                                | Accepted because of covid-19 response only |  |
| С                | 12m           | 3m PPQ initially<br>9m clinical (1) accepted                            | Ensures supply chain                       |  |
| D,E              | 12m           | 3m PPQ initially<br>6m PPQ during review<br>9/12m clinical (1) accepted | Ensures supply chain                       |  |
| F,G              | 24m           | 3m PPQ initially<br>6m PPQ during review<br>12m clinical (1) accepted   | Accepted because of covid-19 response only |  |

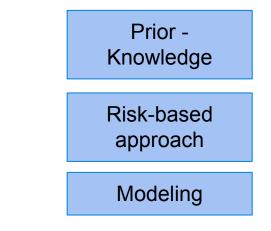


#### Summary

- Predictive stability models partially accepted for Covid-19 antibody "cocktail"
- Additional real-time data provided during review. Clinical stability data partially accepted too
- Pandemic experience highlighted significant potential to accelerate CMC stability using predictive modeling for biologics (e.g., mAbs), noting that models used could differ based on knowledge

## Conclusion

Roche




#### Conclusion

- Model approaches already existed pre-pandemic were highly useful but never used to this magnitude
- Some acceleration unique to pandemic urgency but could be further utilized to accelerate supply to patients
- Pre-Market
  - Formulation changes
  - Configuration/presentation changes
  - Accelerated launch; setting initial shelf-life

Post-Market

- Shelf-life of post change material
- Stability lifecycle management



#### Doing now what patients need next