

Control Strategies for Particles Arising from HCPmediated Degradation of Polysorbate: A Regulatory Perspective

Paula Russell, PhD – Biologist/Evaluator, Cytokines Division, Biologics and Genetic Therapies Directorate, Health Canada

YOUR HEALTH AND SAFETY ... OUR PRIORITY.

Disclaimer

The views expressed in this presentation are those of the presenter and do not convey official Health Canada policy.

Presentation Overview

- Overview
 - Particles, polysorbate, HCP
- Regulatory Expectations

 Investigation and studies
- Control strategy
 - Particles
 - Polysorbate
 - HCP

Particle Formation

- USP <787-790> and <1178> provide guidance on particles in injectables
- Particles can be classed as;
 - Extrinsic
 - Intrinsic
 - Inherent
- The concerns regarding particles include;
 - Potential risk to patient safety
 - Potentially immunogenic
 - Potential impact to product quality
 - Potential impact to processes (filters)

Polysorbate Overview

- Polysorbate is a common surfactant used to protect biopharmaceuticals against interfacial stresses experienced during manufacture, transport, and storage
- Function to prevent protein aggregation
- Sorbitan group with polymerized ethylene oxide groups and partial esters of fatty acids

Taken from Dwivedi et al., Int. J. Pharm, 2018

Degradation Mechanisms

- Polysorbate can degrade through oxidative or hydrolytic mechanisms
 - Oxidation is typical due to the presence of oxygen and the product contact material
 - Hydrolysis can be either chemical or enzymatic
- The degradation products are indicative of the mechanism of degradation

Taken from Dwivedi et al., Int. J. Pharm, 2018

HCPs

- 'Hitch-hiker proteins' co-elute by binding to the product
 - Binding has been localized to the CDR in the Fab region
 - Binding has been characterized as weak
 - Binding is mAb-dependent
- Examples of HCP known to co-elute with mAbs include;
 - Triacylgycerol lipase
 - Phospholipase B-like 2 (PLBL2)
 - Lipoprotein lipase
 - Lysomonal phospholipase A2
 - Carboxyl ester hydrolase

HCPs and polysorbate degradation

- Typical narrative for uncovering particles arising from HCP-mediated degradation of polysorbate
 - Out-of-specification or out-of-trend result is observed at 12-18 months for drug product on stability under long-term storage conditions of 2-8°C
 - Particles Visible (VP) or subvisible (SVP)
 - Clarity turbidity
 - Polysorbate levels are observed to have decreased over the same period

Regulatory Expectations

- Demonstrate that the manufacturing process is capable of consistently producing product with the desired qualities and with very low levels of impurities
- Investigations and studies are expected to be provided when polysorbate degradation and/or particle formation have been observed
- Results of the investigations and studies are used to inform the manufacturing process changes and control strategies

Investigation – Particle Composition

- Composition of the particles can be indicative of the root cause of the particle formation
 - SVP and VP containing FA esters, aldehydes, and ketones are likely due to oxidation
 - SVP and VP composed primarily of FFA and free of protein are likely due to enzymatic degradation of polysorbate
 - SVP and VP composed of proteinaceous components likely result from factors other than HCP-mediated degradation of polysorbate

Investigation – Root Cause

- Source of degradation Enzymatic
 - Protein dilution studies
 - HCP assay no change in result with sample dilution
 - Polysorbate degradation assay decrease in result with sample dilution
 - Lipase inhibitor studies
- Quantification and Identification of lipolytic HCPs
 - Quantify level of the contaminating HCP
 - Low levels (<LOQ of the assay) v. high levels (~100 ppm)
 - Identification of the lipolytic HCP
 - Sensitive identification methods

Investigation – Questions

- Was the increase in particles the result of a process change?
 - Change in cell line
 - Removal of HIC chromatography step
 - New supplier of polysorbate
- Was the increase in particles the result of a test method change?
 - Previous methods not sensitive to SVP particles
 - Previously not monitoring polysorbate levels

Additional Assessments

- Toxicological Assessment
 - FFA from particles
 - Immunogenicity of the contaminating HCP
- Establish the minimum effective level for polysorbate to ensure CQAs of the product are maintained at release and over the shelf life of the drug product

- The aim of the control strategy should be to minimize the contaminating HCP and to decrease particle formation in response to degradation of polysorbate
- Polysorbate should be defined as a critical excipient if changes in polysorbate levels are observed over the shelf life and result in an increase in the formation of particles
- A control strategy is required when particles arise from HCP-mediated degradation of polysorbate

- Control of Raw Materials
 - Testing of polysorbate to ensure quality
 - Selection of polysorbate starting material
 - Customized polysorbates with higher contents of shorter chain FA
 - Shorter chain FA are more soluble and are less likely to form particles
 - Potential to change prevent degradation of polysorbate

- Control during manufacturing process
 - Lipase-free cell line
 - Addition of a HIC chromatography step
 - In-process control for HCP / identified HCP-lipase
 - In-process control to ensure correct amount of polysorbate is added
 - Based on manufacturing process development and formulation development studies that identify the level of polysorbate required to ensure product quality

- Controlling particles and polysorbate for release and stability of the drug product
 - Controlling VP and SVP particles should be included in the stability protocol and as part of the long-term, accelerated, and stressed stability studies
 - Polysorbate content should be controlled as part of the stability protocol with an appropriate specification
- Use of an in-line filter prior to administration to remove particles

Health Canada

- We welcome regulatory questions via pre-CTA meetings or pre-NDS meetings in-person or via teleconference
- Contact Office of Regulatory Affairs

Office of Regulatory Affairs **Biologics and Genetic Therapies Directorate** Health Products and Food Branch Health Canada 100 Eglantine Driveway, Tunney's Pasture Address Locator: 0601C Tunney's Pasture, Ottawa, Ontario, Canada K1A 0K9 Fax: 613-946-9520, Tel: 613-957-1722 General Enquiries: Email: BGTD_ORA@hc-sc.gc.ca

Acknowledgements

- Wallace Lauzon, Manager
- Fiona Cornel, Sr. Biologist/Evaluator
- Colleagues in CERB at BGTD

