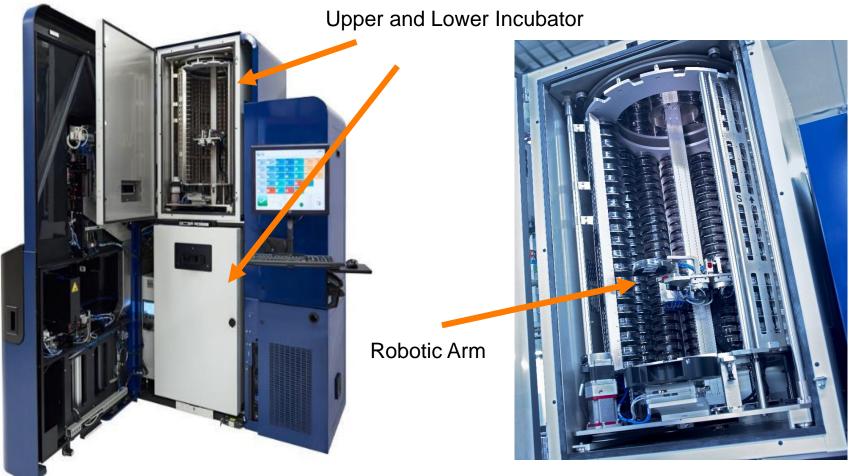


Validation and Implementation of an Automated Colony Counter for Product Testing in Biopharmaceutical Manufacturing

CMC Forum Fall 2020, October 15, 2020, Virtual Conference

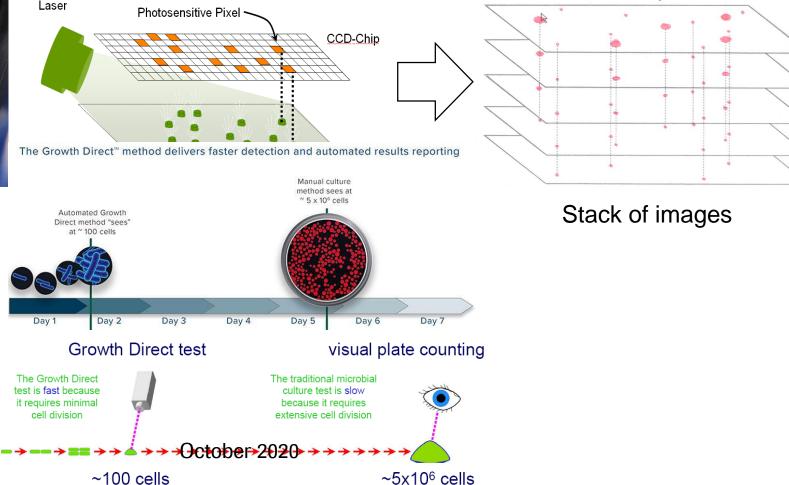
Dr. Sven Deutschmann, Roche, Global QC, Global Analytical Science and Technology


Technology and Methodology *Expected Improvements*

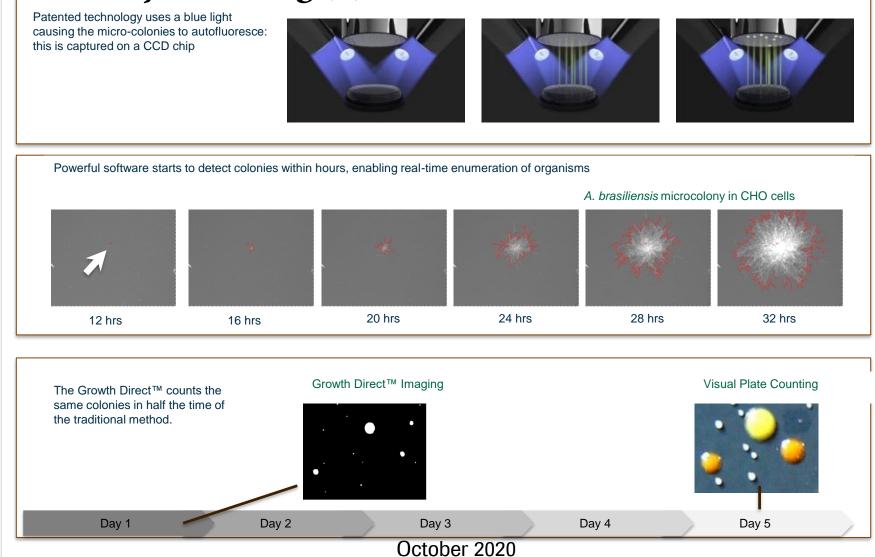
Automated Colony counting: Expectations

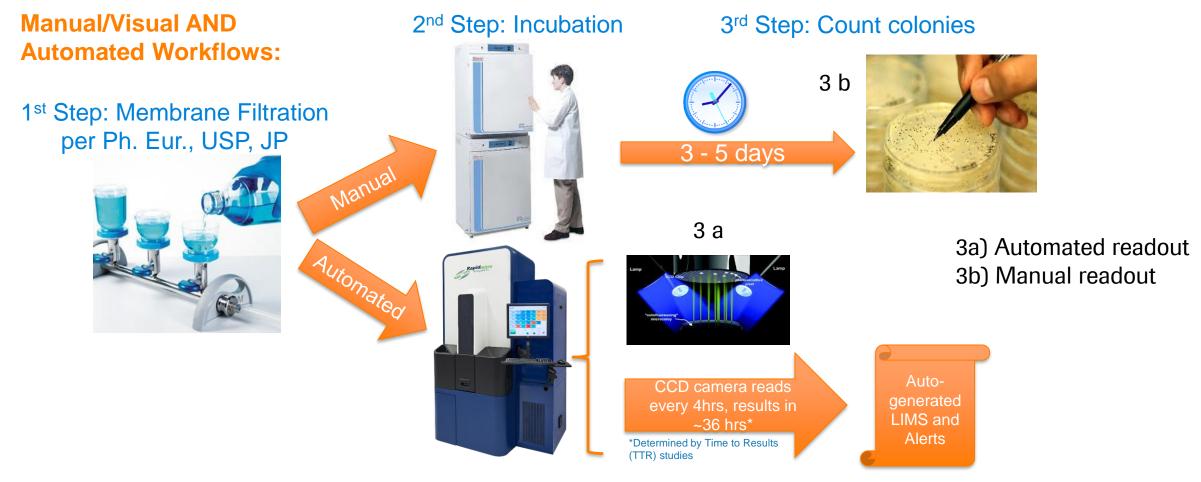
- Data Integrity improvements: with automated and validated result interface with LIMS and also with standardized readout per camera and not per human eye (variance per employee); also with capturing electronic raw data/images (audit trail and audit trail review possible)
- Reduction of hands-on time and review time: headcount savings
- Enables real-time-release: immediately reports results after 36 hours for IPC and DS release (note: per current Roche rtr definition)
- Notification if growth is detected: quicker response times to potential contamination in manufacturing

Technology and Methodology *Technology*


October 2020

Technology and Methodology *Automated Colony Counting (1)*


Automated system for bioburden counting using endogeneous autofluorescence of the cells (500-550 nm)



Technology and Methodology *Automated Colony Counting (2)*

Technology and Methodology *Comparison of Readout Methods*

October 2020

Regulatory Guidance *Equipment Qualification / Method Validation Parameter (1)*

1. General Consideration

- The Growth Direct System technology uses standard media for microbial growth and standard incubation temperatures to allow colony forming units (CFU) to grow and be counted. Sampling and testing methodology is per standard microbiological methods, using the Growth Cassette products instead of traditional consumables. The media can be qualified as described in the relevant pharmacopeia, e.g. USP <61> and Ph. Eur. 2.6.12.
- The core component of the test, the cassette, uses the **same growth media** held in a polystyrene cassette as is used in traditional Petri plates. The test for viability is thus the same as determined using the traditional method.
- The Growth Direct System can be defined as growth-based bioburden test with automated colony counting or readout for the incubation and enumeration of colonies grown on standard microbiological media.

Regulatory Guidance *Equipment Qualification / Method Validation Parameter (2)*

Criterion	Quantitative test
Accuracy	+
Precision	+
Specificity	+
Detection limit	_(2)
Quantitation limit	+
Linearity	+
Range	+
Robustness	+
Suitability testing	+
Equivalence testing	+

 Ph. Eur. 2.6.12 and USP<61>: "Alternative microbiological procedures, including automated methods, may be used, provided that their equivalence to the Pharmacopoeia method has been demonstrated."

• **Ph. Eur. 5.1.6 (01/2008)** "Validation of this application would, therefore, require validation of the recovery system employed rather than the entire test."

• **USP<1223>** "In the implementation of these enhanced methods for the detection of colony growth, only the detection capability of the method requires verification."

PDA Technical Report TR33

- "Some alternative or rapid technologies may be considered as automated traditional or compendial microbiological test methods, ...
- "A risk assessment should be performed to determine the required testing that would support the validation of the alternative or rapid technology."

Conclusion: The two key parameters to evaluate during the equipment qualification are thus defined as Accuracy and Precision. Both parameters apply to the automated count of a specific sample compared to the human count for the same sample.

Regulatory Guidance *Product-Specific Method Validation*

Product-Specific Compendial Method Suitability Test

- The Growth Direct technology uses standard membrane and media for microbial growth and standard incubation temperatures to allow CFU to grow and be counted. As these methods and materials comply with the compendia this technology is not defined as an alternative method. As such many of the requirements of USP <1223>, Ph. Eur. 5.1.6 and PDA TR 33 (alternative methods sections) are not applicable and the technology can be validated using standard USP and Ph. Eur. methods.
- The key system parameters for evaluation of the bioburden test are those that are defined in the USP Chapters <61>, and EP 2.6.12.
- The parameters to test will be:
 - 1. Spike and recovery of micro-organisms to the matrix of interest, Accuracy, and Precision. (note: these are the requirements defined in TR33 for an "Automated Compendial Method").
 - Growth inhibition assay with and without product (Method Suitability Test). Acceptance Criterion: 50 200 % recovery of the microorganisms spiked into the sample to be tested.
- Care should be taken to ensure that any liquid samples are readily filterable and do not leave residues on the filter that could obscure colonies or otherwise interfere with the CCD chip-based readout technology.

Regulatory Guidance *Assessment: Alternative Method or NOT? (1)*

FDA's Feedback:

• Minutes FDA-BPOG f2f meeting on 19-OCT-2018 in Bethesda (s. screenshot)

Summary of the Day – Session 4.3: BioPhorum Verification of Automated Colony Counters

Key points

- Include rationale for using automated counters in the file
- Don't include change of manual to automated in the BLA, this is not a method change
- Leverage all good points, data accuracy, integrity etc.
- Define the logic of minimum number of replicates
- Know your product, could it obscure colonies?

CONNECT COLLABORATE ACCELERATE ™

Output from RI02

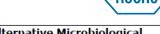
Regulatory Guidance Assessment: Alternative Method or NOT? (2)

Feedback from European Authorities (1):

• PEI/ECA Joint Workshop on Alternative Microbiological Methods on 13-FEB-2019 in Langen (s. screenshot)

Participants:

In sum 30 participants


© ECA Academy - www.gmp-com

15 participants from different competent authorities (reviewer or GMPinspectors) representing 9 different European countries

Outcome:

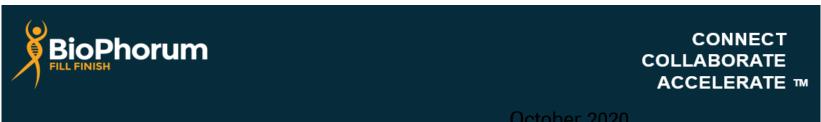
- No uniform position of the representatives of the authorities
- Follow-up as part of the f2f Meeting BPOG and EMA/EDQM in Rome (Italy), 13. 27th June 2019 13. 14. 14.

PEI und ECA Joint Workshop on Alternative Microbiological Methods

Schedule, 13 February 2019, Paul-Ehrlich Institut, Langen, Germany			
08.30 – 09.00 h	Welcome and Introduction		
09.00 – 09.20 h	Look to the Neighbourhood – The Validation Guidance in Food Barbara Gerten, Chairwoman DIN Working Group Microbiological Food Testing incl. Rapid Methods		
09.20 – 09.40 h	Implementation of AMM's - Expectations of an Authority Oleg Krut, Paul-Ehrlich Institut,		
09.40 – 10.00 h	Automated Colony Counter – Alternative Method or not? Dr. Sven Deutschmann, Roche		
10.00 – 10.15 h	Short Wrap-Up		
10.15 – 10.45 h	Coffee-break		
10.45 – 11.10 h	Cooperation Roadmap on AMM Implementation Roche/GSK/MSD/J&J/Astra Zeneca Philip Breugelmans, Janssen, Sven Deutschmann, Roche, Chairman ECA Microbiology Working Group,		
11.10 – 11.35 h	CAR-T cells? Challenges with Patients specific Lot Release Stefan Merkle, Janssen,		
11.35 – 12.00 h	Testing of ATMP Antonio Rodríguez, Cell Manufacturing Unit. Regional University Hospital, Malaga-IBIMA. GMP Network of the Andalusian Initiative for Advanced Therapies, Spain,		
12.00 – 13.00 h	Lunch		
13.00 – 13.30 h	EP Chapter 5.1.6. Sébastien Jouette, EDQM		
13.30 - 14.00 h	USP 1071 David Roesti, Novartis, Member USP Expert Group		
14.00 – 14.15 h	Short Break		
14.15 – 15.15 h	Round Table Discussions		
15,15 – 15.30 h	Short Break		
15.30 – 16.30 h	Final Plenum Q&A Session		

Regulatory Guidance

Feedback from European Authorities (2):

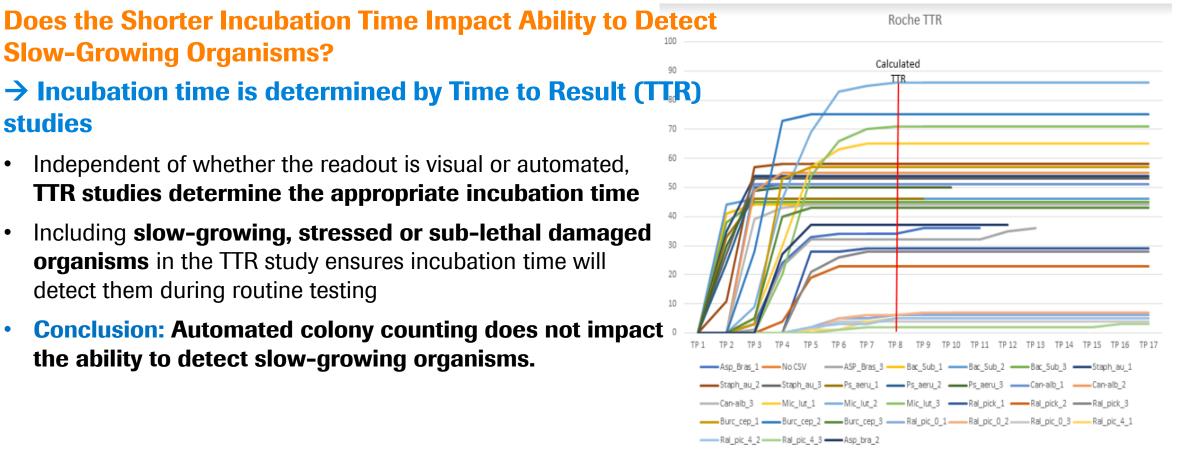

• EMA/EDQM-BPOG f2f meeting on 27-JUNE-2018 in Rom

Participants:

- 5 colleagues representing the Agencies (1x EDQM / Ph. Eur.-Department, 4x EMA)
- 18 colleagues representing 11 different pharmaceutical companies
- 2 BPOG-moderator

Outcome:

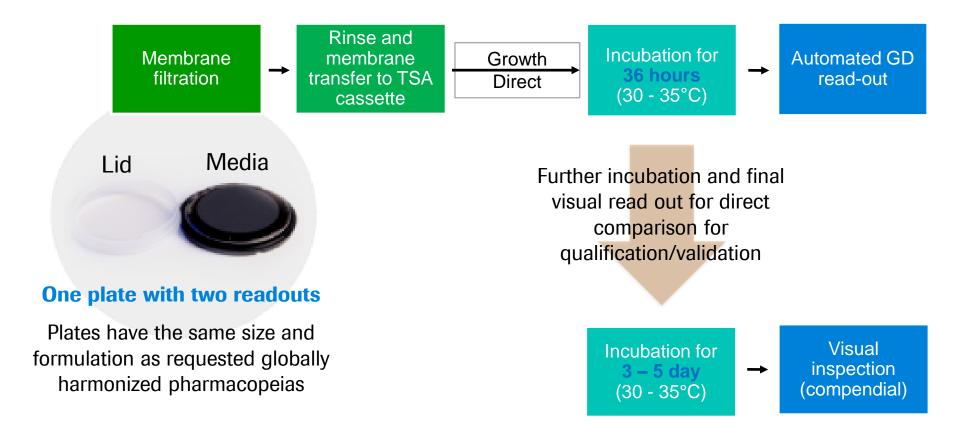
- Automated colony counting is considered as a change to traditional colony counting methods
- EDQM's representative prefers the following definition for Growth Direct System:
 - → "Growth-based bioburden test with automated colony counting or readout"



Time-to-Result-Determination

٠

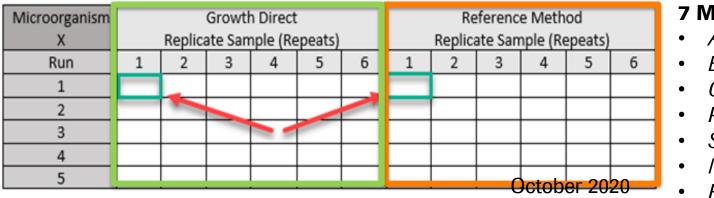
٠



TTR-study for product testing

October 2020

Experimental Setup

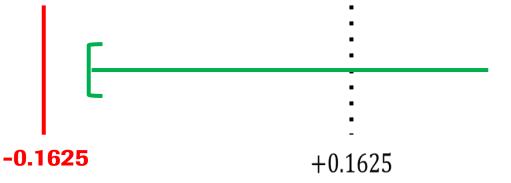


Accuracy & Precision

Design of Experiments:

- For comparison of Growth Direct (GD) and REF-method (visual counting) consider separately 7 organisms at <u>60 cfu / 70 cfu</u> level.
- Per 7 microorganism:
 - 5 independent analytical runs (different analysts, different lots)
 - 6 replicate samples per run (12 dependent results)
 - Each replicate sample measured twice (GD / REF)
- Number of runs/replicates determined by a power study for accuracy / precision hypothesis testing (minimum power 0.8)

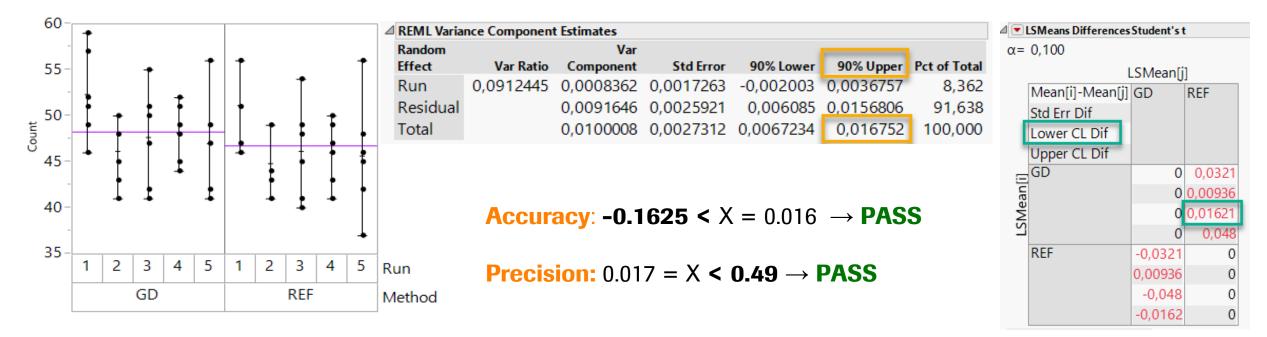
7 Microorganisms per run:


- A. brasilienis
- B. subtilis
- C. albicans
- P. aeruginosa
- S. aureus
- M. luteus
- R. pickettii

Accuracy & Precision: Non-Inferiority Testing & Acceptance Criteria

Accuracy:

Non-inferiority is accepted if lower bound one-sided 95% confidence interval for the difference of means is **> -0.1625**


Precision:

Non-inferiority is accepted if upper bound one-sided 95% confidence interval for the variance component "Total" is < (0.7)^2 = 0.49

Equipment Qualification / Method Validation *Validation Example: B. subtilis*

Summary:

- All 5 pharmacopeia and 2 in-house microorganisms passed the accuracy and precision acceptance criteria
- Equivalency (= Non-Inferiority) between automated Growth Direct readout and manual readout can be concluded with statistical significance with this method validation

Equipment Qualification / Method Validation *Validation Results: Summary Accuracy*

Accuracy:

Organism	Ratio geom. Mean GD/REF (original scale)	Ratio geom. Mean GD/REF (log scale)	LCL (log scale)*	Acceptance Criterion pass/fail
Aspergillus brasiliensis	1.03	0.0271	0.0055	Pass
Bacillus subtilis	1.03	0.0321	0.0162	Pass
Candida albicans	1.01	0.0051	0.0004	Pass
Pseudomonas aeruginosa	1.00	-0.0026	-0.0139	Pass
Staphylococcus aureus	1.00	-0.0011	-0.0054	Pass
Micrococcus luteus	1.00	0.0023	-0.0019	Pass
Ralstonia pickettii	0.97	-0.0301	-0.0416	Pass

*Note: acceptance criterion = lower bound one-sided 95% confidence interval for the difference of means is > -0.1625

Equipment Qualification / Method Validation *Validation Results: Summary Precision*

Precision:

Organism	Growth Direct Method					
	RSD (%)	Intermediate Precision				Repeatability
	(original scale)	$SD = \sqrt{VAR}$ (log scale)	VAR (log scale)	UCL* (log scale)	Acceptance Criterion pass/fail	SD = \sqrt{VAR} (log scale)
Aspergillus brasiliensis	11.63	0.1245	0.0155	0.0255	Pass	0.1230
Bacillus subtilis	9.97	0.1000	0.0100	0.0168	Pass	0.0957
Candida albicans	6.96	0.0742	0.0055	0.0097	Pass	0.0674
Pseudomonas aeruginosa	8.52	0.0867	0.0075	0.0129	Pass	0.0867
Staphylococcus aureus	8.21	0.0821	0.0067	0.0112	Pass	0.0797
Micrococcus luteus	16.03	0.1683	0.0283	0.0795	Pass	0.1054
Ralstonia pickettii	18.08	0.1775	0.0315	0.0558	Pass	0.1598

*Note: acceptance criterion = upper bound one-sided 95% confidence interval for the variance component "Total" is < (0.7)² = 0.49

Supportive Studies: Mixed Cultures

	Growth Direct / [cfu/membrane]	Visual / [cfu/membrane]	Species		
Plate 1	42 CFU	38 CFU	B. subtilis (18), R. pickettii (20)		
Plate 2	59 CFU	55 CFU	B. subitilis (21), R. pickettii (34)		
Plate 3	59 CFU	61 CFU	B. subitilis (28), R. pickettii (33)		

	Growth Direct / [cfu/membrane]	Visual / [cfu/membrane]	Species
Plate 1	98 CFU	101 CFU	S. aureus (23), R. pickettii (7), B. subtilis (31), C. albicans (28), A. brasiliensis (14)
Plate 2	101 CFU	98 CFU	S. aureus (25), R. pickettii (9), B. subtilis (28), C. albicans (22), A. brasiliensis (14)
Plate 3	104 CFU	96 CFU	S. aureus (26), R. pickettii (8), B. subtilis (27), C. albicans (25), A. brasiliensis (10)

Supportive Studies: Range

				Counted CFU/Platte	
5 CFU	20 CFU 50 CFU	Sample	Growth Direct after 36 h (Mean)	Visual Count after 3 days (Mean)	
P. aeruginosa		F Correction	Ps_100KBE	120	106
(Ps)			Ps_70KBE	72	69
	70 CFU	100 CFU	Ps_50KBE	59	56
			Ps_20KBE	23	23
		(A A A A A A A A A A A A A A A A A A A	Ps_5KBE	6	6
5 CFU	20 CFU	50 CFU	Rp_100KBE	57	56
			Rp_70KBE	50	49
R. pickettii			Rp_50KBE	33	35
(Rp)			Rp_20KBE	11	11
	70 CFU	100 CFU	Rp_5KBE	1	1

21 Numbers underneath the plates are inoculated CFU/plate

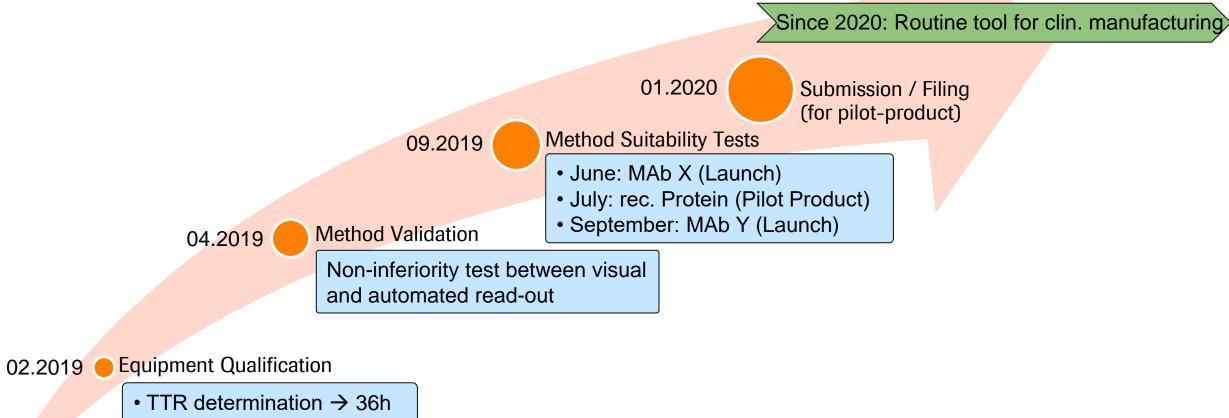
Equipment Qualification / Method Validation *Method Suitability Test for Drug Substance*

Results of the Method Suitability Test (example: 3rd PPQ batch):

PPQ 3	Growth Direct			Visual		
Release sample	Reference	after 36h	Recovery %	Reference	MW visual	Recovery %
Staph. aureus	23	27	117.39	23	27	117.39
P. aeruginosa	26	26	100.00	26	26	100.00
B. subtilis	25	22	88.00	25	22	88.00
A. brasiliensis	23	14	60.87	23	14	60.87
C. albicans	33	27	81.82	33	27	81.82
R. pickettii	41	29	70.73	43	29	67.44
Staph. hominis	79	56	70.89	83	57	68.67

Note: Numbers are cfu per membrane

Summary:


• the Drug Substance samples of all three PPQ-batches passed the method suitability test

October 2020

Roche

Equipment Qualification / Method Validation

Project Timeline & Milestones @ Pilot Site

- 5 pharmacopeia MO
- 2 in-house isolates
- pH stressed slow-grower

Acknowledgements

Microbiology

Microbiology Dept. QC Penzberg (Germany)

Statistical Support

Dr. Viviane Grunert da Fonseca

Thank you for your attendance !

APPENDIX

Appendix 1: Regulatory Guidance *Equipment Qualification / Method Validation Parameter (1)*

Ph. Eur. and USP Requirements:

- USP <61>, "Microbiological Examination of Non-Sterile Products: Microbial Enumeration Methods", and EP 2.6.12 "Microbial Examination of Non-Sterile Products: Microbial Enumeration Tests" both state that "Alternative microbiological procedures, including automated methods, may be used, provided that their equivalence to the Pharmacopoeia method has been demonstrated."
- EP 5.1.6 (01/2008) "Alternative Methods for the Control of Microbiological Quality" states: "It is critical to the validation effort to identify the portion of the test addressed by the alternative method. For example, there are a variety of methods available to detect the presence of viable cells. These methods may have applications in a variety of tests (e.g. bioburden, sterility tests) but may not, in fact, replace critical aspects of the test entirely. [...] Validation of this application would, therefore, require validation of the recovery system employed rather than the entire test."
- USP40/NF35 <1223> "Validation of Alternative Microbiological Methods" states the following: "There are commerciallyavailable enhancements to growth-based methods that allow colonies on solid media to be read more quickly, with substantially less incubation time, than is possible using only the unaided eye ... In the implementation of these enhanced methods for the detection of colony growth, only the detection capability of the method requires verification."
 - ➤ This statement supports the view that the Growth Direct[™] System is not an alternative method requiring method validation

Appendix 1: Regulatory Guidance *Equipment Qualification / Method Validation Parameter (2)*

Specific USP Requirements

- USP40/NF35 General Notices 6 "Testing Practices and Procedures" provides guidance of the use of automated and alternative test methods:
 - 6.20 "Automated Procedures" states, "Automated and manual procedures employing the same basic chemistry are considered equivalent".
 - ➤ The statement is equally true for procedures employing the same basic microbiology such as a plate count and the Growth Direct[™] System.
 - 6.30 "Alternative and Harmonized Methods and Procedures" states, "Alternative methods and/or procedures may be used if they have advantages in terms of accuracy, sensitivity, precision, selectivity, or adaptability to automation or computerized data reduction, or in other specialized circumstances. Such alternative procedures and methods shall be validated as described in the USP40/NF35 general chapter Validation of Compendial Procedures <1225> and must be shown to give equivalent or better results"

Appendix 1: Regulatory Guidance *Equipment Qualification / Method Validation Parameter (3)*

PDA Technical Report 33 Requirements:

- The PDA Technical Report TR33 "Evaluation and Validation of New Microbiological Test Methods" (Sept. 2013) contains the following text: "Some alternative or rapid technologies may be considered as automated traditional or compendial microbiological test methods, especially when the results are in colony forming units (CFU). These technologies may be qualified for their intended use without the need for demonstrating certain method validation requirements as specified in Section 5.0 of this Technical Report. For these technologies, at least accuracy and precision assessments should be performed, in addition to method suitability and equivalence / comparability studies. A risk assessment should be performed to determine the required testing that would support the validation of the alternative or rapid technology."
- The two key parameters to evaluate during the equipment qualification* are thus defined as **Accuracy and Precision**. Both **parameters apply** to the automated count of a specific sample compared to the human count for the **same sample**.

^{*} note: although the methodology is unchanged some companies define this step as primary method validation rather than equipment qualification

Appendix 2: Statistical ModelAccuracy: Non-Inferiority Testing & Acceptance Criterion

Statistical Model:

The validation parameter "accuracy" is studied per organism with the aim of verifying whether the (geometric) mean ratio of the GD counts to the REF counts (visual counting of colonies by abalysts) is greater than 0.85 (H_1 = non-inferiority hypothesis). The non-inferiority test is carried out with log-transformed data, where, in log-scale, the mean difference is considered with respect to the non-inferiority margin Δ = $-\log(0.85) = 0.1625$.

The acceptance criterion for accuracy is passed, if the non-inferiority test can reject the null hypothesis H_0 for a significance level $\alpha = 0.05$. This is the case, when, based on the log-transformed data, the lower limit (LCL) of the one-sided 95% confidence interval for the difference of means $[X; \infty)$ is greater than $-\Delta = -0.1625$.

Statistical Procedure:

- Fit mixed effects repeated measures model to log-transformed GD/REF count data to account for dependencies in the data
- Statistical hypothesis test with non-inferiority hypothesis (H₁): *GD accuracy equivalent* with or *much better* than *REF accuracy*
- Hypothesis test considers difference of means of (natural) log-transformed data
 - → Non-inferiority means difference > -0.1625 = -log(0.85)
 - For original data this corresponds to ratio of (geometric) means
 - → Non-inferiority means ratio > 0.85

Acceptance Criterion:

> Non-inferiority is accepted if lower bound one-sided 95% confidence interval for the difference of means is > -0.1625

Appendix 2: Statistical Model

Precision (Intermediate): Non-Inferiority Testing & Acceptance Criterion

Statistical Model:

The validation parameter "precision" was studied per organism with the aim of verifying whether the intermediate precision in terms of RSD is smaller than 0.7 (H_1 = non-inferiority hypothesis). The non-inferiority test was carried out with log-transformed data, where in log-scale, the standard deviation (SD) is compared against the value 0.7. Given that the count data is negative-binomial distributed, for small values, SD of the log-transformed data corresponds to RSD of the original data. For larger values it holds that $SD_{log-data} > RSD_{original-data}$. If the non-inferiority test decides with statistical significance, that $SD_{log-data} < 0.7$, then, as a consequence, one can also conclude that $RSD_{original-GD} < 0.7$. The acceptance criterion for precision was passed, if the non-inferiority test can reject the null hypothesis H_0 for a significance level $\alpha = 0.05$. This is the case, when, based on the log-transformed data, the upper limit (UCL) of the one-sided 95% confidence interval for the variance component "total" (0 ; X] is smaller than 0.7 squared (= 0.49).

Statistical Procedure:

- · Fit repeated measures random effects model to log-transformed GD count data to account for dependencies in the data
- Statistical hypothesis test with non-inferiority hypothesis (H₁):GD precision equivalent with or much better than (fixed) reference precision
- Hypothesis test considers Standard deviation (SD) of (natural) log-transformed data
 - → Non-inferiority means SD < 0.7
 - For original data this (appr.) corresponds to relative standard deviation (RSD)
 - → Non-inferiority means RSD < 0.7

Acceptance Criterion:

Non-inferiority is accepted if upper bound one-sided 95% confidence interval for the variance component "Total" is < 0.7² October 2020

Doing now what patients need next