

ICH Q1s/5C Revision - Opportunities in Science and Risk-based Testing Approaches for Biologics

CMC Strategy Forum Japan, Dec 9, 2025

Boris Zimmermann, PhD

Disclaimer

The content represents the presenter's views, based on publicly available and Roche internal information, and should not be construed as the position of ICH, EWGs, or industry associations.

Roche

Table of Content

1. Science and Risk-Based Approaches and Progress in New ICH Q1
2. Biologics Stability and Risk Framework
3. Case Studies
4. Summary and Conclusion

Science and risk-based approaches: Progress in ICH Q1

Targeted Revisions of the ICH Stability Guideline Series (Guidelines ICH Q1A-F, ICH Q5C)
Endorsed by the Management Committee on
15 November 2022

- Clarify applicability of requirements across development and lifecycle:
- Application of an **integrated, science and risk-based approach** to stability.
- Address how concepts should be applied to address product **lifecycle/post-approval changes** (risk-based approaches based on change) and ensure consistency with ICH Q12 principles.

* 1: INTRODUCTION [2]

Outline the stability data expectations, scope (synthetic and biological products), and general principles, including how stability testing establishes a re-test period or shelf life.

* 2: DEVELOPMENT STABILITY STUDIES UNDER STRESS AND FORCED CONDITIONS [1]

Describes studies used to gain product knowledge, characterize physical/chemical/biological changes, establish intrinsic stability, confirm analytical procedure validation, and inform specifications.

* 3: PROTOCOL DESIGN FOR FORMAL STABILITY STUDIES [1]

Provides guidance on establishing a formal stability study protocol, including general principles, stability-indicating critical quality attributes (CQAs), specifications, and additional considerations for vaccines/combination products.

* 4: SELECTION OF BATCHES [5]

Details the requirements and considerations for selecting primary stability batches, including minimum number of batches and special considerations for multiple production sites, vaccines, and continuous manufacturing.

* 5: CONTAINER CLOSURE SYSTEM [0]

Discusses the considerations for the container closure system (primary and secondary packaging) used in stability studies, ensuring its protection, compatibility, and functionality over the product's shelf life.

* 6: TESTING FREQUENCY [0]

Provides recommendations on the frequency of testing for primary stability studies under long-term, accelerated, and intermediate storage conditions to establish the stability profile.


* 7: STORAGE CONDITIONS [0]

Specifies the long-term, intermediate, and accelerated storage conditions for different climatic zones and product types (room temperature, refrigerated, frozen) and considerations for impermeable/semi-

* 8: PHOTOSTABILITY [2]

Addresses the principles for evaluating photostability, including forced photodegradation and confirmatory studies, to ensure light exposure doesn't compromise product efficacy or safety.

* 9: STABILITY CONSIDERATIONS FOR PROCESSING AND HOLDING TIMES FOR INTERMEDIATES [1]

Details how to establish maximum processing and holding times for drug substance and drug product intermediates to ensure their quality and prevent deleterious effects on subsequent processing.

* 10: SHORT-TERM STORAGE CONDITIONS [0]

Discusses stability studies to support a specified short-term storage condition on the label, different from long-term storage or in-use periods, for patient convenience.

* 11: IN-USE STABILITY [2]

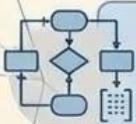
Describes the principles for establishing the in-use period and storage conditions after the primary container is breached, mimicking the intended use for single-dose or multi-dose products.

* 12: REFERENCE MATERIALS, NOVEL EXCIPIENTS AND ADJUVANTS [1]

Covers stability considerations for reference materials, novel excipients, and vaccine adjuvants due to their potential impact on drug product quality.

* 13: DATA EVALUATION [0]

Focuses on the systematic evaluation of stability data, including statistical methods and extrapolation principles, to establish a re-test period or shelf life.


* 14: LABELLING [1]

Provides guidance on establishing storage statements and expiration/re-test dates on the product labelling, including considerations for excursions outside the labelled storage conditions.

* 15: STABILITY CONSIDERATIONS FOR COMMITMENTS AND PRODUCT LIFECYCLE MANAGEMENT [1]

Addresses stability studies conducted to confirm initial proposals (commitment studies), monitor marketed products (ongoing studies), and support post-approval changes and new dosage forms.

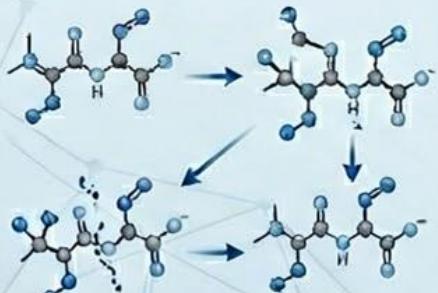

* ANNEX 1: REDUCED STABILITY PROTOCOL DESIGN [4]

Addresses recommendations for applying reduced stability protocol designs, such as bracketing and matrixing, when warranted by product stability knowledge.

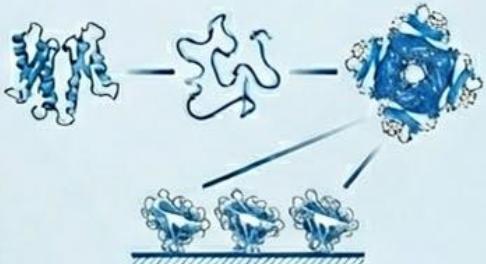
* ANNEX 2: STABILITY MODELLING [1]

Provides additional and specific recommendations on statistical tools and models (e.g., linear models, mixed effects models, enhanced modelling) for supporting extrapolation and enhanced stability modelling approaches.

* ANNEX 3: STABILITY OF ADVANCED THERAPY MEDICINAL PRODUCTS (ATMPs) [5]

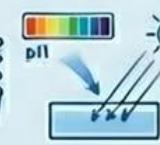

Provides unique recommendations for designing stability studies for ATMPs, accounting for their complex nature, small batch size challenges, and general reliance on real-time data.

Keep the Biologics Stable


Chemical Instabilities

- **Deamidation**
- **Oxidation:** most commonly methionine, tryptophan
- **Fragmentation**
- **Isomerization:** Asp to iso-Asp

Physical Instabilities


- **Aggregation:** dimers, trimers, and higher-order aggregates - major concern for immunogenicity
- **Denaturation/Unfolding:** unfavorable environmental conditions (e.g., thermal stress).
- **Adsorption:** reduces the effective concentration of the therapeutic product.
- **Precipitation:** visible, insoluble particles

Environmental Stress Factors

These instabilities are often accelerated by unfavorable storage conditions:

- **Temperature:** High temperatures accelerate both chemical degradation and physical unfolding/aggregation. Conversely, repeated freeze-thaw cycles can induce aggregation due to stresses like ice-water interfaces and solute concentration in freeze-concentrates.
- **pH and Buffer Composition**
- **Light Exposure**
- **Mechanical Stress (Shear/Agitation)**

The Stability Risks Landscape and it's Complexity

Industry - Patient Needs, Supply & Brand Risk

Real-time data mandate is a major roadblock to market access of new products and robust and non-complex supply to patient for post-approval products.

Deficiencies may lead to risk realization:

- Product Recalls
- Patient Harm
- Reputational & Financial Loss

Product - Technical & Scientific Risk

Accelerated data alone is insufficient for complex molecules, leading to inaccurate predictions of long-term behavior.

- Inaccurate Extrapolation

- Uncertainty in CQAs like purity, aggregation level, and fragment formation under actual storage conditions.

- Process/Package Failure

Health Authorities - Patient Concerns & Efficacy Risk

The absence of real-time data leads to an inability to confirm that the product remains safe and effective throughout its proposed shelf life.

- Loss of Potency

- Safety Hazards

- Incorrect Dosing

Evolution of Biologics Stability Strategy: From Risk to Knowledge

Roche

1.

2.

3. Acceptable risks for stability?

- Limited data
- Reduced study design
- Both

Foundational stability data - product specific

Foundational stability data - product specific

Enhanced Approach:
Based on foundational stability data.

Limited data; commit to generate foundational stability data post approval - **VERIFY SCIENCE**

Limited data + reduced design; based on foundational stability data - **FULLY BENEFIT FROM SCIENCE**

Case Study: IgG1 Monoclonal Antibody in Pre-filled Syringe

Roche

Stability Data Available at Initial Market Authorization (IMA) Submission

Product:
IgG1 Monoclonal Antibody

Container:
Pre-filled Syringe

Proposed Shelf Life:
24 Months

Storage Condition:
2 to 8C (Refrigerated)

The Regulatory Challenge

The submission includes data from three pivotal commercial-scale batches (primary batches) manufactured processes representative for the final process (compatibility according Q5E demonstrated).

Initial Problem: The data technically only supports a 12-month shelf life for Batches 2 and 3.

Claim/Justification Required: The manufacturer must provide a strong, science and risk-based justification to claim the full 24-month shelf life based on the success of Batch 1 and the predictive power of supplementary data and platform knowledge.

Batch Status vs. Proposed Shelf Life (24M)

Claim: Grant the 24-month shelf life.

Justification:

1. Favorable Real-Time Data & Extrapolation

Batch 1 Success: Meets all CQAs (Potency, Aggregation, Purity) at 24 months.

Consistent Rate of Change: Batches 2 & 3 (12M) show statistically consistent degradation rates.

Predictive Accelerated Data: All 3 batches show slow, consistent degradation, supporting 24M extrapolation (low risk of non-linear failure).

2. Comprehensive Prior Knowledge & Early Development Data

Product-Specific Knowledge
Formulation Screening Studies confirm IgG1 configuration is most stable.

Stress Degradation studies show Aggregation is the only major, well-understood pathway.

Platform Knowledge
Extensive data for similar IgG1 molecules on the same manufacturing platform confirms robust stability.
Aggregation rates are typically slow & predictable over 3-5 years.

3. Low Risk of Failure & Regulatory Commitment (Mitigation)

Consistent CQA Margins: Batches 2 & 3 show large safety margin at 12M (e.g., Aggregation ~1.0% vs. 3.0% spec), suggesting sufficient buffer.

Commitment Stability Protocol: Formal commitment to test Batches 2 & 3 at 18 and 24 months.

Action Plan: Immediate agency notification and corrective action (e.g., shelf life reduction) upon any spec failure.

Case Study: Switch from IV to SC Formulation (Two Doses)

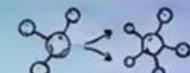
Original Product:
Vial, IV infusion

New SC Product:
Subcutaneous (SC) Injection

Pre-filled Syringe
2 to 8C (Refrigerated)

Proposed Shelf Life and Data Status at IMA Submission (36 Months Claim)

The manufacturer is claiming a 36-month shelf life for both the Low Dose (LD) and High Dose (HD) SC presentations.


The Combined Regulatory Challenge

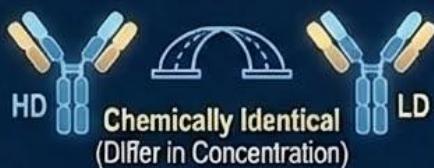
1. Extrapolation Risk (HD):
Justifying a 36-month shelf life with only 24 months of real-time data.

2. Major Data Gap (LD):
Justifying a 36-month shelf life with only 12 months of real-time data—a 24-month extrapolation.

3. Formulation Differences:
The SC formulation is inherently different from the IV formulation, limiting direct prior knowledge use.

Scientific Justification using Prior Knowledge & Comparability

Claim: Grant the 36-month shelf life for both SC presentations

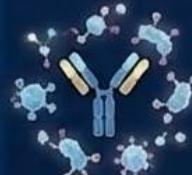


1. Product-Specific Knowledge & Comparative Stability

HD Extrapolation (24M → 36M)

Low Dose (LD) Comparability Bridge

Same Degradation Pathways (e.g., Aggregation)


2. Platform Prior Knowledge (Bridging from IV Product)

IV Product (Infusion)

SC Product (Injection)

IgG1 Scaffold & Disulfide Bond Integrity Robust >3+ Years

Known Stabilizing Platform (High-Concentration IgG1s)

3. Risk Mitigation & Regulatory Commitment

LD Extrapolation Justification (12M → 36M)

Confirmed Comparability
High Margin to Acceptance Criteria (12M)

Commitment Protocol

- Submit 36M Data (HD)
- Submit 18M, 24M, 36M Data (LD)

Contingency: Reduce Shelf Life to 24M if Failure at 36M

Summary and Conclusion

Key takeaways

- ✓ New ICH Q1 accelerates science and risk-based approaches.
- ✓ A risk framework is crucial for biologics stability testing
- ✓ Early investment in stability knowledge drives lifecycle benefits
- ✓ Successful cases exist (limited but to build on), IMA shelf life claim, switch from IV to SC formulation
- ✓ The required approach is flexible and case-by-case

Promoting science and risk-based stability

- What is the true risk for biologics?
- Frontloading opportunity to gain earlier knowledge and profit at IMA and post-approval
- Tribal/Platform knowledge Biologics to be acknowledged
- End of shelf life specification safety margin for stability CQA
- Opportunity to balance manufacturing convenience <> long-term storage covariance
- Lifecycle considerations and significant lower risk post-approval

A change is needed

- Science- and risk based framework exists and to be better utilized for stability
- It will be case by case (no standard approach)
- Mindset shift for both regulators and industry - we need accelerated product approval timelines with a meaningful shelf life for predictable global patient supply

Doing now what patients need next