Targeted revision of ICH Q1s/Q5C - Opportunities with science and risk-based approaches

CMC Strategy Forum Japan 2022

Boris Zimmermann, Senior Director - Analytical Science
Genentech, A Member of the Roche Group
Table of contents

- Science and risk-based approaches in pharmaceutical stability
- Stability lifecycle and application areas
- Example 1 - Annual stability commitment protocol
- Example 2 - Post-marketing change and shelf-life of post-change material
- Summary
Science and risk-based approaches in pharmaceutical stability
Science and risk-based approaches in pharmaceutical stability

Introduction & current environment

- Science- and risk-based approaches in ICH Q8/11 (Development of Control Strategies) and ICH Q9 (Quality Risk Management), ICH Q10 (Quality System), and Q12 (Life-cycle Approaches)
- ICH Q1s/Q5C provide uncertainty to both industry and regulatory agencies using those approaches
- ICH (Q1A(R2), Q1D) allows for bracketing and matrixing during stability testing
- Recently established guidelines for accelerated programs (FDA BTD, EMA PRIME) facilitate the use of new approaches and innovative tools for stability - COVID-19 pandemic learnings
- Industry and regulatory agencies gained maturity with prior/platform knowledge, enhanced product-scientific understanding, and risk-based principles
- Targeted revision of ICH Q1s/Q5C started
Science and risk-based approaches in pharmaceutical stability

Talking Points

Why is Stability Testing important?
- Stability testing is important
- Determining factors such as a product's shelf life
- Optimal storage conditions
- Behavior when excursions and in-use
- Assuring a safe and efficacious product for patients

Risk assessment
- Linking to stability - Which material attributes and process parameter have an effect on stability
- 3 Fundamental questions
 - What might go wrong?
 - What is the likelihood (probability) it will go wrong?
 - What are the consequences (severity)?
- Enhanced product-scientific knowledge, platform knowledge/experience, and tools enable to answer the questions and is de-risking stability

What to learn from ICH Q8 - Q11 framework?
- Structured way to define product critical quality attributes, design space, the manufacturing process process and product knowledge, and the control strategy
- Q11 clarifies principles of Q8, Q9, and Q10 and provide examples

What to learn from ICH Q12?
- Regulatory tools and guiding principles enhance industry's ability to manage postapproval changes supporting innovation and continual improvement
Stability lifecycle and application areas
Stability lifecycle and application areas

- Make development product (clinical trials & validation activities)
- Product Approval
 - Development of stability protocols
 - Study design - photostability, in-use stability
 - Stability modelling approaches
 - candidate identification/formulation screening
 - Decision for allowed temp excursions mfg, storage and labeling
- Commercial product supplied to market
 - Additional manufacturing sites post-marketing
 - E2E stability assessment to support changes incl. risk mitigation
- Product divestment
 - Define stability strategy over life cycle - beneficial studies when more knowledge is gained

Example 1
Example 2

Consistent application of science- and risk based approaches to further debottleneck stability to avoid drug shortage, accelerate urgent medical needs and focus on innovation.
Examples
Example 1 - Annual stability commitment protocol

- Product knowledge and stability understanding highest in commercial/post-marketing phase
- Years/decades of consistent stability profile incl. experience manufacturing and analytical method changes knowledge (incl. platform knowledge)
- Non-stability indicating testing removed/reduced - adequate stability information still provided
- Stability assessment integrated to change control/PQS process

mAb (IgG1)
- DS @-40°C, @DP 5°C
- 2 DS mfg sites
- 2 DP mfg sites
- +10y post-launch

<table>
<thead>
<tr>
<th></th>
<th>DS</th>
<th>0y</th>
<th>1y</th>
<th>2y</th>
<th>3y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Charge -IEC</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Potency</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

DP
- 0y
- 1y
- 2y
- 3y

<table>
<thead>
<tr>
<th></th>
<th>0y</th>
<th>1y</th>
<th>2y</th>
<th>3y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>VP/subVis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Charge-IEC</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Size -SEC</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Potency</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>pCCI</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

One DS site per mfg year - alternating between sites

One DP site per mfg year - alternating between sites; no endotoxin, no sterility
Example 2 - Post-marketing change and shelf-life of post-change material

- Introduction of additional DS manufacturing site post-marketing
- Benefit/risk balance included Quality Risk Management, Validation, Comparability, Site Inspection Assessment
- Accelerated study with post-change material and stress comparability study w/ representative post-change vs. pre-change material to confirm know stability behavior and mode(s) of degradation
- DP stability impact assessment
- Enabled by ICH Q12 section 9. stability data approaches

Key check points:
- ✓ Low risk from benefit/risk assessment
- ✓ Scientific-sound comparability exercise successful
- ✓ No impact seen in stability-related, shelf-life limiting quality attributes
- ✓ No impact to DP manufacturing and stability - CQAs, impurities, raw materials, leachable profile

- **DS - 3y expiry** supported by 6 to 9m real-time data at time of submission
- **DP - 3y shelf life** supported by 0-3m real-time data at time of submission
- **Commitment** to notify about any OOT and include new DS into DP stability program for confirmation

mAb (IgG1)
- DS @-20°C, @DP 5°C
- 1 DS mfg sites
- 1 DP mfg sites
- +3y post-launch
Summary
Summary

- Opportunity to use more science and risk-based approaches for stability
- Risk-based decision-making in stability testing needs to be encouraged in alignment with the existing ICH Q8-Q11 framework and ICH Q12
- Two examples provided - Efficient, product-specific post-marketing stability studies are fully aligned with modern approaches used in product and process development and reflect gained experience/knowledge
- Encouraging support from regulatory agencies - however, regulatory acceptance of these approaches is variable
- Industry to outline how the combination of scientific rationale and product knowledge has been leveraged successfully to develop stability strategies that are robust, efficient, and safe through the product shelf-life
- The revised ICH Q1 stability guideline needs to have added stability-related risk-based principles that are scientifically sound, including examples
Doing now what patients need next