Proteinaceous Visible Particle in Liquid Monoclonal Antibody Formulations

Satoshi Saitoh
Analytical Development Department

CHUGAI PHARMACEUTICAL CO., LTD.

05 December 2022
Proteinaceous Visible Particle in Liquid Monoclonal Antibody Formulations

Agenda

01 Protein & Interfacial Stresses

02 Surfactants

03 Case Studies of effectiveness of PX188

04 Message
Therapeutic proteins are inherently aggregation-prone especially in their unfolded or partially unfolded states

Key Point!
- Fold vs Unfold
- Nature vs Denature

Protein & Interfacial Stresses

Folding of Proteins

All Proteins can be **UNFOLDED** by any type of stresses

Native Protein/ Folded Protein
Denatured Protein / Unfolded Protein

- Hydrophilic Residues
- Hydrophobic Residues

Folding
Unfolding (Stress)
All Proteins can be **DENATURED** by any type of stresses

- Therapeutic Proteins (e.g. Antibody) are the same as Egg Protein (e.g. Albumin)

Denaturation of Proteins

Denatured Protein

- Temperature
- pH

Native Protein

- Pressure
- Interfaces

Denatured Protein

can be HOT SPOT for Aggregation
All Hydrophobic Interfaces can be “Hot spots for Aggregation”.

Protein & Interfacial Stresses

Hot spot / Interfaces in Therapeutic Protein Drug

All Hydrophobic Interfaces can be “Hot spots for Aggregation”.

- **“SOLID–liquid Interface”** (Glass)
- **“OIL–liquid Interface”** (ex. Silicone from Siliconized Container)
- **“AIR–liquid Interface”**

“Hydrophobic Interface” of molecule (Intermolecular)

“OIL–liquid Interface” (ex. Silicone from Siliconized Container)
Importance of Desorption step and Trigger of the step are often discussed in many literatures.
Protein & Interfacial Stresses

Mechanical Stresses / Trigger of particle formation

- Ex. Moving Air bubble, mechanical stress by needle

Protein & Interfacial Stresses

Uncertainty/Complexity/Ambiguity of Mechanism

- All protein can form aggregates, especially on the interface.
- However, a wide variety of worst cases/root causes can be considered.

- It is impossible to remove all interfaces & all stresses.
 ➔ Surfactants can reduce a wide variety of stresses.
Proteinaceous Visible Particle in Liquid Monoclonal Antibody Formulations

Agenda

01. Protein & Interfacial Stresses

02. Surfactants

03. Case Studies of effectiveness of PX188

04. Message
Surfactants are used to stabilize Therapeutic Proteins.

- Polysorbate 20/80, Poloxamer 188

Lukas Bollenbach, Julia Buske, Karsten Mäder, Patrick Garidel, Poloxamer 188 as surfactant in biological formulations – An alternative for polysorbate 20/80?, International Journal of Pharmaceutics, Volume 620, 2022, 121706
Mechanism of Stabilization by surfactants is frequently discussed.
Proteinaceous Visible Particle in Liquid Monoclonal Antibody Formulations

Agenda

01 Protein & Interfacial Stresses

02 Surfactants

03 Case Studies of effectiveness of PX188

04 Message
• A method to characterize the PPO(polypropylene oxide) block length.
Case Studies of effectiveness of PX188

Characterization of PX188

- Surface Tension depends on the Chromatographic characteristics
- Lot-to-lot variability was confirmed.

<table>
<thead>
<tr>
<th>ID</th>
<th>Product name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX(1)</td>
<td>Kolliphor P188 (Lot A)</td>
</tr>
<tr>
<td>PX(2)</td>
<td>Kolliphor P188 (Lot B)</td>
</tr>
<tr>
<td>PX(3)</td>
<td>Kolliphor P188 (Lot C)</td>
</tr>
<tr>
<td>PX(4)</td>
<td>Kolliphor P188 Bio</td>
</tr>
<tr>
<td>PX(5)</td>
<td>Poloxamer 188 Empower Expert</td>
</tr>
<tr>
<td>PX(6)</td>
<td>Poloxamer 188 Emprove</td>
</tr>
<tr>
<td></td>
<td>Expert cell culture optimized</td>
</tr>
<tr>
<td>PX(7)</td>
<td>PLONON#188P</td>
</tr>
</tbody>
</table>

Length of PPO block (Late Eluters>17min[area%])

Surface tension (SFT)
Case Studies of Effectiveness of PX188

Impact of PX188 Variability for HMWS by SE-HPLC

- No clear impact for HMWS (high molecular species (e.g. dimer))

<table>
<thead>
<tr>
<th>mAb</th>
<th>Formulation</th>
<th>Initial</th>
<th>5°C</th>
<th>25°C</th>
<th>40°C</th>
<th>5°C + shaking & dropping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 months</td>
<td>6 months</td>
<td>3 months</td>
<td>6 months</td>
</tr>
<tr>
<td>mAb1</td>
<td>PX(1)</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>PX(2)</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>PX(3)</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>PX(4)</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>PX(5)</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>PX(6)</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>PX(7)</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>mAb2</td>
<td>PX(1)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>PX(2)</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>PX(3)</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>PX(4)</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>PX(5)</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>PX(6)</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>PX(7)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Case Studies of effectiveness of PX188

Impact of PX188 variability for SvP by Flow imaging

- A minor trend but not conclusive.

Protein-like images are counted by filtering (Aspect ratio <0.80, intensity mean <780)

* = Data not available due to preferential use for particle identification
Impact of PX188 variability for VP by visual inspection

- VP occurrence depends on the PX188 characteristics.
 - 5deg, 6 months: No VP observed
 - 25deg, 6 months

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Protein-only VP (1)</th>
<th>Protein–PDMS VP (2)</th>
<th>Proteinaceous VP (1) × (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX(1)</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>PX(2)</td>
<td>1/10</td>
<td>2/10</td>
<td>3/10</td>
</tr>
<tr>
<td>PX(3)</td>
<td>2/10</td>
<td>2/10</td>
<td>4/10</td>
</tr>
<tr>
<td>PX(4)</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>PX(5)</td>
<td>1/10</td>
<td>0/10</td>
<td>1/10</td>
</tr>
<tr>
<td>PX(6)</td>
<td>0/10</td>
<td>5/10</td>
<td>5/10</td>
</tr>
<tr>
<td>PX(7)</td>
<td>0/10</td>
<td>1/10</td>
<td>1/10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Protein-only VP (1)</th>
<th>Protein–PDMS VP (2)</th>
<th>Proteinaceous VP (1) × (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX(1)</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>PX(2)</td>
<td>1/10</td>
<td>0/10</td>
<td>1/10</td>
</tr>
<tr>
<td>PX(3)</td>
<td>1/10</td>
<td>2/10</td>
<td>3/10</td>
</tr>
<tr>
<td>PX(4)</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>PX(5)</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>PX(6)</td>
<td>0/10</td>
<td>5/10</td>
<td>5/10</td>
</tr>
<tr>
<td>PX(7)</td>
<td>0/10</td>
<td>0/10</td>
<td>0/10</td>
</tr>
</tbody>
</table>

Note = Raman spectroscopy was used for particle identification
Case Studies of effectiveness of PX188

Conclusion of the Case Study

- Higher hydrophobic PX188 can reduce the risk of Proteinaceous Pericles.
Proteinaceous Visible Particle in Liquid Monoclonal Antibody Formulations

Agenda

01 Protein & Interfacial Stresses

02 Surfactants

03 Case Studies of effectiveness of PX188

04 Message
Proteinaceous Visible Particle in Liquid Monoclonal Antibody Formulations

Message

- Protein unfolding/aggregates/particles might be unavoidable.
- However, they can be controlled by appropriate/practical strategies.

Protein Science
Understanding of Product

Regulatory Science
Practically Free/Essentially Free
INNOVATION BEYOND IMAGINATION