

Rapid detection of viruses of concern with Blazar[®] Platform - In line with ICH Q5A(R2)

CMC Strategy Forum Japan 2022 5-6 Dec 2022

Feng Huixing, PhD Field Technology Manager, Asia Pacific

The life science business of Merck operates as MilliporeSigma in the U.S. and Canada.

BioReliance®

Pharma & Biopharma Manufacturing & Testing Services

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada

BioReliance®

Pharma & Biopharma Manufacturing & Testing Services

Viral safety assurance requires risk mitigation at a number of stages

Traditional cell line characterization tests for ~20 specific viruses and MERCK takes 45+ days

- Mice, hamsters and/or rats inoculated
- Animal observations for ~28 days
- LCMV challenge
- Animals euthanized and samples taken
- Antibody production measured immunologically – e.g. ELISA

BioReliance

Adventitious agent testing is often a rate-limiting step in downstream processing

For CHO-based processes, the industry shift towards intensified and continuous manufacturing increases the need for rapid testing methods to detect:

- Bacteria/fungi
- Mycoplasma
- Adventitious viruses

BioReliance

Endogenous
retrovirus-like
particles

Alternatives to culture-based testing approaches are required

- Traditionally, most testing at the bulk harvest stage is performed using culture-based methods
- Alternative methods should provide breadth of detection and sensitivity, as well as speed

Molecular methods can accelerate virus testing

The Blazar[®] platform workflow uses a 3-step method for virus detection

Extraction

- Nucleic acid extraction from total bulk harvest material (cells and supernatant)
- Samples are pre-spiked with control viruses to confirm that extraction and PCR perform as expected

Degenerate PCR

- Two rounds of PCR (first round and nested PCR) to increase sensitivity and specificity
- Separate assays for DNA and RNA viruses (with preceding reverse transcriptase step for RNA viruses)

Fragment analysis

 Separation by capillary electrophoresis and automated analysis of peaks in relation to expected size ranges

BioReliance®

Use of degenerate primers provides broad specificity

1997 ICH Q5(A) guidelines

MAP	HAP	RAP
Ectromelia Virus ^{2,3}	Lymphocytic Choriomeningitis Virus (LCM) ^{1,3}	Hantaan Virus ^{1,3}
Hantaan Virus ^{1,3}	Pneumonia Virus of Mice (PVM) ^{2,3}	Kilham Rat Virus (KRV) ^{2,3}
K Virus ²	Reovirus Type 3 (Reo3) ^{1,3}	Mouse Encephalomyelitis Virus (Theilers, GDVII) ²
Lactic Dehydrogenase Virus (LDM) ^{1,3}	Sendai Virus ^{1,3}	Pneumonia Virus of Mice (PVM) ^{2,3}
Lymphocytic Choriomeningitis Virus (LCM) ^{1,3}	SV5	Rat Coronavirus (RCV) ²
Minute Virus of Mice ^{2,3}		Reovirus Type 3 (Reo3) ^{1,3}
Mouse Adenovirus (MAV) ^{2,3}		Sendai Virus ^{1,3}
Mouse Cytomegalovirus (MCMV) ^{2,3}		Sialoacryoadenitis Virus (SDAV) ²
Mouse Encephalomyelitis Virus (Theilers, GDVII) ²		Toolan Virus (HI) ^{2,3}
Mouse Hepatitis Virus (MHV) ²		
Mouse Rotavirus (EDIM) ^{2,3}		
Pneumonia Virus of Mice (PVM) ^{2,3}		
Polyoma Virus ²		
Reovirus Type 3 (Reo3) ^{1,3} Sendai Virus ^{1,3}		
Thymic Virus ²		

Blazar[®] Rodent virus panel

* DNA Viruses from ICH List * RNA Viruses from ICH List

BioReliance®

Accelerating CHO bulk harvest testing requires a full set of rapid methods

Accelerating CHO bulk harvest testing requires a full set of rapid methods

Timelines are shown as minimum total assay turnaround time

BioReliance®

Blazar® CHO AOF panel targets 15 virus families

Internal experts, industry consultants

Consideration of historical CHO cell contamination events

Focus on viruses for which CHO cells are permissive, and/or which may have potential to infect human cells

Emerging viruses included to cover future risks

Virus family	Туре	Example viruses covered by CHO AOF panel	
Adenoviridae	dsDNA	human adenovirus A/B/C/D/E/F/G	
Anelloviridae	ssDNA	rat torque teno virus-1/2	
Circoviridae	ssDNA	rat circovirus, porcine circovirus-1/2/3	
Parvoviridae	ssDNA	minute virus of mice, hamster parvovirus, rodent protoparvovirus, rat parvovirus 2, rat bocavirus	
Polyomaviridae	dsDNA	rat polyomavirus 2	
Bornaviridae	ssRNA	borna virus	
Caliciviridae	ssRNA	vesivirus 2117, rat norovirus, mouse norovirus, Calicivirus-Allston-2008	
Coronaviridae	ssRNA	mouse hepatitis virus	
Hepeviridae	ssRNA	hepatitis E virus	
Orthomyxoviridae	ssRNA	influenza virus A/B	
Paramyxoviridae	ssRNA	beilong virus, Human respirovirus 1 strain, Human parainfluenza virus types 1/2/3/4/5, Measles virus, Mumps	
Picornaviridae	ssRNA	coxsackie virus B3, Encephalomyocarditis virus	
Reoviridae	dsRNA	reovirus-1/2/3, Mammalian orthoreovirus, Epizootic hemorrhagic disease virus	
Rhabdoviridae	ssRNA	vesicular stomatitis virus	
Togaviridae	ssRNA	semliki forest virus, Chikungunya virus strain, Eastern equine encephalitis virus	

Degenerate PCR enables detection of emerging viruses

Multiple variants detected

- For each virus family, degenerate PCR primers are designed against genomic regions representing conserved protein motifs
- This provides broad specificity, allowing multiple family members and related variants to be detected
- The Blazar[®] CHO AOF RNA panel is predicted to detect >26,900 viral target sequences

Proof of concept

- A coronavirus primer design has the ability to detect the emergent human SARS-CoV-2 virus
- The Blazar[®] CHO AOF primers were designed in 2018, more than one year before SARS-CoV-2 was described

Nature article

https://doi.org/10.1038/s41586-020-2008-3 Received: 7 January 2020 Accepted: 28 January 2020 Published online: 3 February 2020 Open access

8-3 Fan Wu¹⁷, Su Zhao²⁷, Bin Yu³⁷, Yan-Mei Chen¹⁷, Wen Wang⁴⁷, Zhi-Gang Song¹⁷, Yi Hu²⁷,
Zhao-Wu Tao², Jun-Hua Tian³, Yuan-Yuan Pei¹, Ming-Li Yuan², Yu-Ling Zhang¹, Fa-Hui Dai¹,
Yi Liu¹, Qi-Min Wang¹, Jiao-Jiao Zheng¹, Lin Xu¹, Edward C. Holmes^{1.5} & Yong-Zhen Zhang^{1,4,6}

Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a maior threat to public health¹⁻³. Despite intense research

The Blazar[®] platform mitigates the risk of emerging viruses, which pose a major threat to biologics manufacture

BioReliance

Blazar® CHO AOF panel specifications

Assay code	399003GMP.BSV (Rockville, US) Available 399003GMP.BUK (Glasgow, UK) Coming soon!	
Sample format	2x1ml of test article	
Total turnaround time	12 days	
Virus coverage	DNA and RNA viruses from 15 virus families	
Internal controls	Spike recovery: DNA and RNA virus each spiked at detection limit in the test article prior to extraction, to demonstrate extraction and PCR efficiency	
Sensitivity	10 genomic copies per reaction*	
False positive rate	<1%	
True positive rate	>99%	
Specificity (pass criteria)	No target peaks observed in 3/3 test article wells Spike recovery control is detected in $\geq 1/3$ wells	
System suitability	No Template Control (NTC) signal detected in 0/3 wells Spike recovery must fall within specified sizing window	

* 100 genomic copies per reaction for polyomaviruses

Suitable for CHO bulk harvest from animal origin-free processes, where the MCB has been fully characterized

BioReliance®

Building on our success...

Our established Blazar[®] rodent panel, which uses the same award-winning technology as the CHO AOF panel, is now familiar to regulators through IND submissions and is used by the majority of our clients for cell line characterization

... in line with updated regulatory guidance

The ICH Q5A revision will promote molecular methods for virus detection

ICH Q5A Revision Addresses Important regulatory and industry Advances

Emerging product types

Virus-like particles (VLPs), subunit proteins, and viralvectored vaccines and gene therapies using novel mammalian and insectbased vector/cell expression systems

Analytical technologies

Nucleic acid-based assays such as PCR and NGS may provide rapid and sensitive detection of adventitious and endogenous viruses in the starting and harvest materials

Virus clearance

validation strategies

Flexibility in validation

approaches should be

allowed in order to

effectively leverage

knowledge gained during

development

Manufacturing

Emerging or advanced manufacturing approaches beyond traditional unit and batch process operations

General guidance on the use of molecular methods ICH Q5A R2 draft (Oct 2022)

3Rs

Virus-specific PCR, targeted molecular methods or NGS can be used as replacement assays for animal-based methods, No headto-head comparison

Infectious agents

Positive results should be investigated to determine infectivity

Assays should be appropriately qualified or validated for their intended use.

Types

NGS and Nucleic Acid Amplification Techniques such as PCR may be appropriate for broad and specific virus detection, respectively

Comparability

These tests may be introduced without a systematic head-tohead comparison with the currently recommended in vivo assays

Summary: Blazar® CHO AOF panel

Rapid and sensitive virus detection for effective risk mitigation in CHO bulk harvest and other applications

Shorten timelines to release

- **12-day** turnaround for CHO bulk harvest samples to replace and/or supplement *in vitro* assay results
- Combine with other rapid methods for an accelerated testing package for animal origin-free processes

Meet regulatory compliance

- Molecular assays are acceptable to regulators and reflect industry trends towards more robust and sensitive methods
- Established Blazar® technology provides the expected sensitivity and breadth of detection
- Reduce need for animal-derived assay components

Reduce sample requirements

Assay requires only 2 x 1 ml bulk harvest

BioReliance®

The vibrant M, Blazar, and BioReliance are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources.

© 2022 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.