

Accelerating Sterility Testing: Case Study on Implementing the 7-day Celsis Method

Method Implementation and Lessons Learned

Dr. Jonas van den Berg, Quality Control Expert at Roche

Α

Table of contents

1. Introduction

- 2. General Approach to adopt Alternative Methods
- 3. Case study: 9-step Approach at Roche
- 4. Project Milestones
- 5. Lessons Learned

Introduction

Implementing new technologies is challenging

General Approach to adopt an Alternative Microbiological Method The 9-step approach

For more details see the 2020 BioPhorum publication <u>A framework for the evaluation, validation and implementation of alternative and rapid microbiological testing methods</u>

General Approach to adopt an Alternative Microbiological Method The 9-step approach

For more details see the 2020 BioPhorum publication <u>A framework for the evaluation, validation and implementation of alternative and rapid microbiological testing methods</u>

9-Step Approach Step 1 - Identify business need

Identify business need

- Faster time to result
- Improvements in data integrity
- No second verified needed
- Earlier intervention in case of an OOS
- State-of-the-art QC operations

8

1

3

5

9-Step Approach Step 2 - Define application

Define application

- Replacement of compendial sterility test
- Qualitative method
- Release testing of drug product

9-Step Approach Step 3 - Identify requirements

Identify requirements

Critical requirements:

- At least 50% reduction in time to result
- Membrane filtration technique
- Suitable for large & small molecules
- Software must be 21 CFR 11 compliant
- Mature technology
- Possibility to determine ID in case of contamination
- Good vendor support

Nice to have requirements:

- Equipment easy to use
- Increased sensitivity
- Increased automation
- Connection to LIMS

8

2

3

4

5

6

Growth-based, e.g.

Detection of CO₂

Digital imaging of

Microcalorimetry

microcolonies

Compare technologies – landscaping and candidate selection

2

3

- 4
- 5
- 6
- Ŭ
- 7
- 8

9

Viability-based, e.g.

Flow Cytometry

Cellular component-

based, e.g.

ATP biofluorescence

9-Step Approach Step 4 - Compare technologies

1 Celsis technology background

2	Step	Compendial method	Celsis method	
3	Filtration	Membrane filtration. Rinse and addition of growth media (TSB and FTM)		
4				
5	Incubation	Incubation for 14 days	Incubation for 7 days	
6	Analysis	Detection by visual inspection of macroscopic growth	Additional sample preparation step. Detection by bio-	,
7				 AK (Adenylate kinase)
8		macroscopic growth	iunniestente reautut	• ATP (Adenosine triphosphate)

9-Step Approach Step 4 - Compare technologies

1

Celsis technology background

9-Step Approach Step 5 – Business case development

Business case

3

4

5

6

8

- 2 Next to the financial aspects (ROI) the following aspects must be considered as well:
 - Efficiency gains
 - HA expectations
 - User/industry feedback

9-Step Approach Step 6 – Proof of concept

Proof of concept / feasibility studies / pre-validation

- Customize the method (pre-validation)
 - Shaking of sterility containers
 - Ensure detection of aggregate forming microorganisms
 - Sample preparation
 - Removal of the aliquot from the sterility containers

Feasibility study (proof of concept)

- Time to result for worst case microorganisms
 - Include C. acnes and stressed microorganisms
- Product interference
 - Evaluate false positive or false negative results

8

2

3

4

5

9-Step Approach Step 7 – Validation at pilot site

Validation at pilot site

- 2 <u>Primary validation</u>
 - Without product, performed at pilot site (in cooperation with vendor)
 - 12 organisms; spike levels of 0.1 / 1 / 10 CFU
 - Demonstrates that Celsis is non-inferior

Method suitability test

- Evaluation of growth-inhibiting properties
- Celsis-specific product-interference testing

8

3

5

9-Step Approach Step 8 – Global deployment

Global deployment / qualification of additional laboratories

2 <u>Method transfer</u>

1

3

4

5

6

8

- Performed for each DP release testing site
- Verification of primary method
- Demonstrates the receiving site is able to run the Celsis analysis

Consideration for regulatory filings and implementation strategy

- 2 Various filing strategies are valid
 - 1. Post-approval-change of already commercially marketed products
 - 2. Filing as part of the launch of a new product
 - 3. Filing in development phase of a new product (CTA)

Specific country requirements, e.g.

In-country testing

8

3

5

Post-approvalchange of marketed products – pilot

Post approval Change - pilot product

- Pilot product only manufactured at one site with moderate production
- Regulatory Strategy
 - Post approval submission without prior HA interaction
 - Wave 1: US, EU, and CH to receive feedback from ,major' HAs (Oct 2019)
 - Wave 2: Rest of world (Apr 2020)
 - File Celsis as primary method, compendial remains as a backup

3 5 6

Post-approvalchange of marketed products

Post approval change of commercially marketed products

- Bundled with other QC technologies
- Combined with filing opportunities, e.g. Life cycle control update
- Out of scope: products at the end of the life cycle and products manufactured at CMOs
- Implementation after final green light, no dual testing
- Switch from compendial to Celsis usually 2-4 years after first submission

9

Filing as part of the launch of new products

Filing as part of the launch of a new product

- Switch to Celsis together with market implementation
- Easier compared to PAS

Filing in development phase of a new product (CTA)

Filing in development phase of a new product (CTA)

- Currently not planned
- No business case for Celsis during clinical phase

Project Milestones Timeline

Case

 Filing as part of new launches

Dec

Project Milestones

Where are we today

Where are we today

- Celsis implemented for 5-10 launch products
- Celsis submitted for more than 10 commercial products

Lessons Learned

Summary

- All health authorities accepted Celsis
- Resource planning
 - Dedicated team and sufficient budget needed to implement a new microbio technology
- Membrane filtration
 - Product interference detected for some products \rightarrow increased background signals
 - Optimize rinsing procedure might be required
- Very long approval times (worldwide)
 - Post approval changes can take 2-4 years until final green light
 - Implementation at launch (BLA/NDA) is much easier and faster

Thank you for your attention

Doing now what patients need next