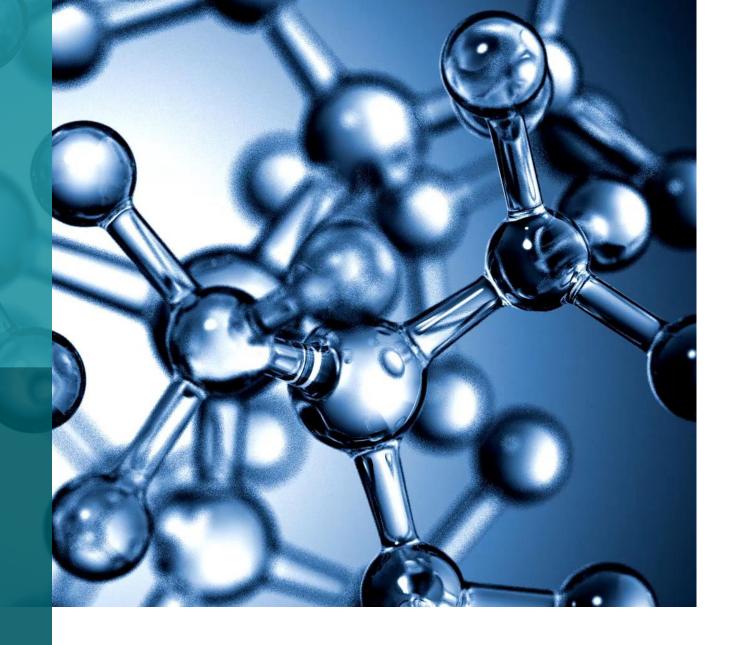
### Consideration on mRNA products potency testing

Pawel Widomski


CASSS CMC Strategy Forum Europe

October 17, 2023



## Agenda

- 1) mRNA technology outlook
- 2) mRNA potency testing



Confidential

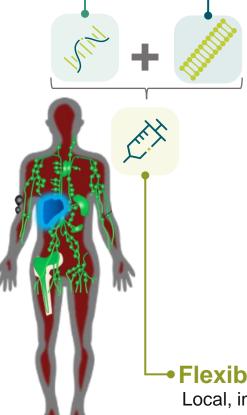
### mRNA technology outlook





### mRNA technology Broad mRNA toolkit built out of deep immunological expertise

#### Multiple mRNA formats


Backbone-optimized optimized uridine mRNA (uRNA)

Backbone-optimized nucleoside-modified mRNA (modRNA)

Self-amplifying mRNA (saRNA) Cap-vutr Replicase SGP Antigen vutr - A30-L-A70

Trans-amplifying mRNA (taRNA)

| Cap UTR    | Replica | ase  | UTR   | P    | 30-L-A70 |
|------------|---------|------|-------|------|----------|
| Cap - vUTR | Antigen | vUTR | A30-I | A70  | )        |
| Cap - vUTR | Antigen | vUTR | A30-I | -A70 | )        |
| Cap - vUTR | Antigen | vUTR | A30-I | -A70 | )        |



### **Delivery formulations**



Lipid nanoparticles (LNP)

Polyplexes

### --Flexible delivery routes Local intratumoral tissue-specific or s

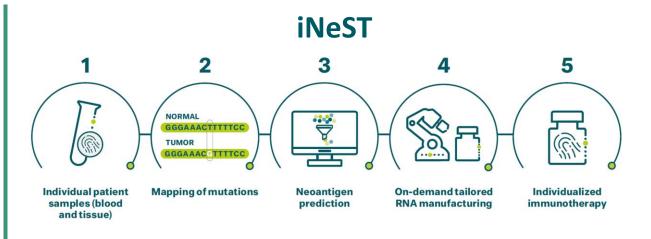
Local, intratumoral, tissue-specific, or systemic



### mRNA technology Each mRNA format is optimized for specific applications



| Multiple mRNA formats                                                                                                                                                     | Targeted ap                                                                                    | oplication                             | Platforms                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|
| Backbone-optimized<br>uridine mRNA (uRNA)<br>Cap-UTR Antigen UTR - A30-L-A70                                                                                              | Potent T cell response<br>Repeat administration                                                | APC<br>T cell                          | Shared antigen mRNA vaccines<br>Individualized neoantigen mRNA vaccines          |
| Backbone-optimized<br>nucleoside-modified mRNA (modRNA)                                                                                                                   | Potent B cell response<br>Non-immunogenic vector                                               | Antibodies<br>B cell                   | Infectious disease vaccines<br>mRNA-encoded antibodies<br>mRNA-encoded cytokines |
| Self-amplifying mRNA (saRNA)<br>Cap-VUTR Replicase SGP Antigen VUTR - A30-L-A70                                                                                           | Sustained expression<br>High potency at low dose                                               |                                        |                                                                                  |
| Trans-amplifying mRNA (taRNA)<br>Cap-UTR Replicase UTR A30-L-A70<br>Cap-VUTR Antigen VUTR A30-L-A70<br>Cap-VUTR Antigen VUTR A30-L-A70<br>Cap-VUTR Antigen VUTR A30-L-A70 | Sustained expression<br>High potency at low dose<br>Ability to co-develop<br>multiple antigens | Antigens 1<br>Antigens 2<br>Antigens 3 | Infectious disease vaccines                                                      |

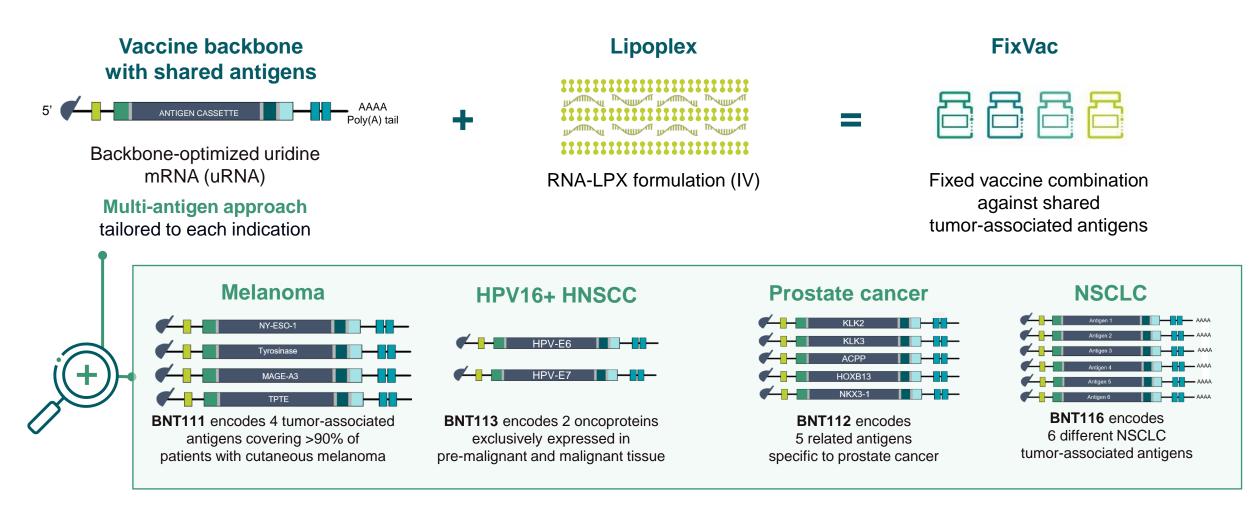

5

### **Our mRNA Cancer Immunotherapy Platforms: FixVac and iNeST**

FixVac



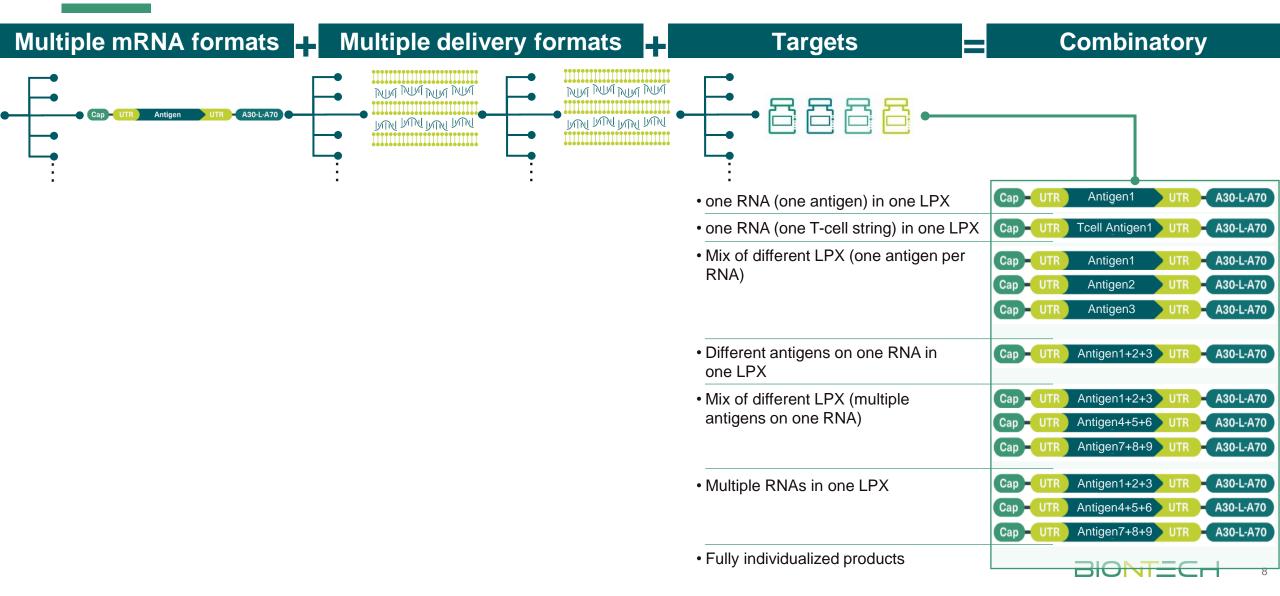
- Off-the-shelf mRNA immunotherapy
- Targeting a fixed combination of shared antigens
  - Non-mutated shared antigens shared across patients
  - Applicable for almost all types of tumor antigens




- Fully individualized mRNA immunotherapy
- Targeting 20 neo-antigens unique to each patient
  - Vast majority of neo-antigens are unique to individual patients
  - Applicable across solid tumor types






### Multi-antigen approach for cancer treatment





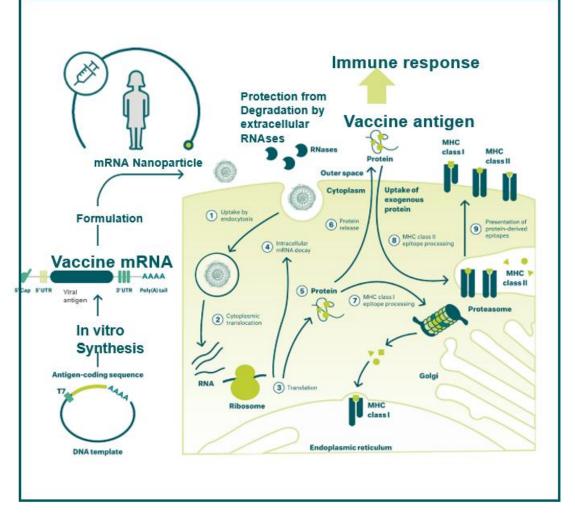


### mRNA technology The four levels of complexity of mRNA vaccines





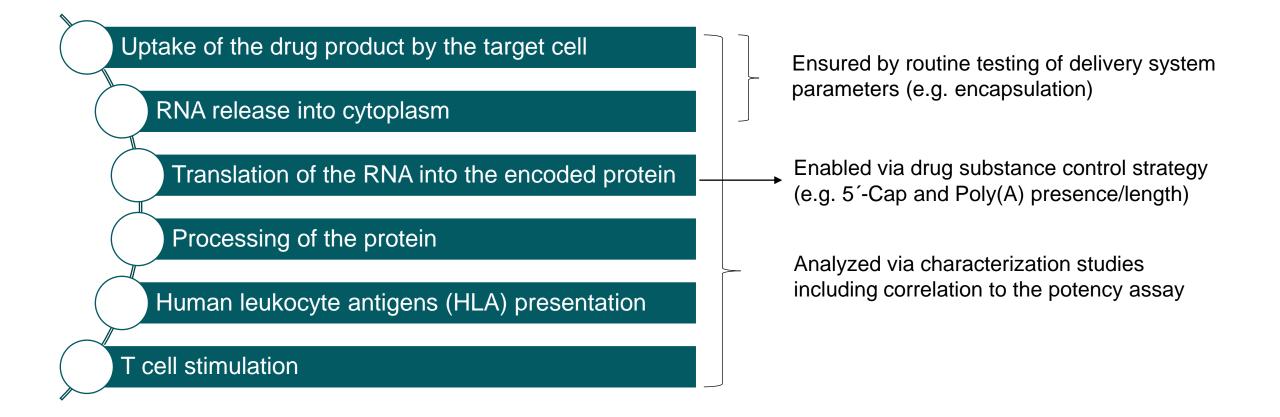
### mRNA potency testing


### Potency of mRNA products

#### Potency definition (ICH Q6b):

"The measure of the biological activity using a suitably quantitative biological assay (also called potency assay or bioassay), based on the attribute of the product which is linked to the relevant biological properties."

- □ **Biological activity** of **mRNA product(s)** is a complex function of final drug product properties, including:
  - delivery to target cells with suitable delivery system
  - translation of the mRNA-encoded protein(s)
- A variety of Modes of Action (MoAs) of mRNA products are possible.
- mRNA is defined as biological substance, therefore potency testing at release and during stability is expected by regulators.


#### mRNA delivers information to APCs





### **Example of Mode of Action**

Example of Mode of Action for an mRNA-based cancer immunotherapy.





### Quality attributes potentially impacting potency

Antigen translation depends on:

| Material | CQA                            | Scope of testing                                                                                                                                                                                              |
|----------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DS       | 5´-Cap                         | <ul> <li>Determination of relative amount of 5'-capped RNA species in drug substance</li> <li>The presence of the appropriate 5'-cap protects the mRNA thereby helping to ensure mRNA translation.</li> </ul> |
| DS       | Poly(A) tail                   | <ul> <li>Determination of presence and/or length of the poly(A) tail</li> <li>Presence of the poly(A) tail protects the RNA thereby helping to ensure translation.</li> </ul>                                 |
| DS       | dsRNA                          | <ul> <li>Control the level of dsRNA</li> <li>Controlling the level of dsRNA in in vitro transcribed mRNA is important to limit induction of cytokines.</li> </ul>                                             |
| DS, DP   | RNA integrity                  | Determination of the intact RNA and detection of potential degradation products                                                                                                                               |
| DP       | RNA encapsulation / free RNA * | <ul> <li>Determination of free and total RNA</li> <li>Proper encapsulation ensures delivery of the RNA and improve the chances of transfection.</li> </ul>                                                    |
| DP       | Particle size                  | Determination of particle size                                                                                                                                                                                |

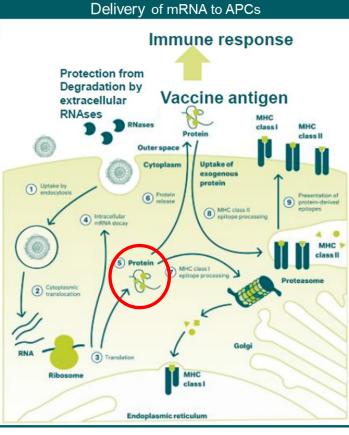


### mRNA characterisation studies

Structural and functional attributes confirmed by mRNA characterisation:

| Attribute                  | Scope of testing                                                                                           |
|----------------------------|------------------------------------------------------------------------------------------------------------|
| Primary Structure          | Expected RNA sequence verified (e.g., sequencing or fingerprinting)                                        |
| Poly(A)-tail               | Presence and length of Poly(A)-tail                                                                        |
| 5'-Cap Structure           | 5'capping structure and 5'-end profile confirmed                                                           |
| High Order Structure (HOS) | The type of HOS confirmed by spectoscopic analysis                                                         |
| Drug Substance Activity    | Size and identity of translated protein (after DS in vitro translation) confirmed by Western blot analysis |

#### Other:


- **Drug Product Activity:** In Vitro Expression of DS formulated in drug product determined by suitable cell-based or cell-free techniques
- Further parts of MoA such as Human leukocyte antigens (HLA) presentation and T cell stimulation will be evaluated using clinical samples (GCLP studies).



### **Current situation**

- Since the application of mRNA technology is relatively new, regulatory guidelines and industry standards are still evolving
- There is a need for continuous dialogue between industry and regulators to address arising questions.
- Several initiatives are currently ongoing to discuss and harmonize not only analytic activities/procedures and quality control (including potency) for mRNA vaccines e.g.:
  - Ph. Eur. Commission established a new working party on mRNA vaccines EDQM<sup>1</sup>
  - United States Pharmacopeia National Formulary; USP draft guidiance<sup>2</sup> on the analytical procedures for mRNA vaccines (2<sup>nd</sup> version):

| Quality | Attribute                    | Method           |
|---------|------------------------------|------------------|
|         |                              |                  |
| Potency | Expression of target protein | Cell-based assay |



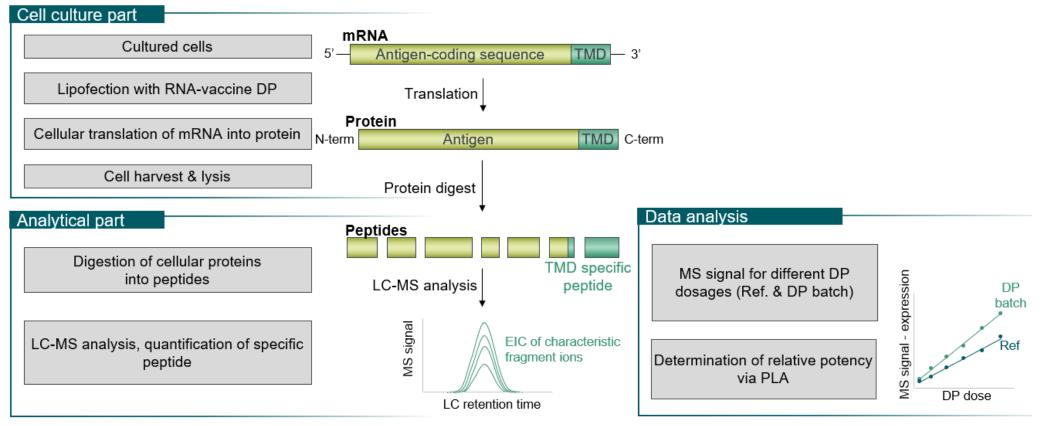


### Challenges on potency testing of mRNA products

- The potency concept ideally applicable to all DP combinations.
- Potential lack of specific detection antibodies (e.g., T cell antigens per se are not optimal targets to induce antibodies) to quantify each translated antigen in a potency assay.
- Generation of detection antibodies is challenging, which limits the accelerated development option offered by mRNA technology.
- Potential cross-reactivity of antibodies to detect multi-construct products may impact the potency assay.
- There is a need for highly sensitive techniques for more potent vaccines with potentially lower dosage.
- Setting a clinically meaningful acceptance criterion for a potency assay (in particular: for patient individualized products).

Example: **BNT162b4**, a prophylactic vaccine candidate:

The vaccine candidate is composed of mRNA encoding for highlyconserved T-cell antigens from SARS-CoV-2 non-spike proteins that are highly conserved across a broad range of SARS-CoV-2 variants.


Purpose: Enhancing and broadening T-cell immunity and potentially extending durability of protection.



### Outlook

Alternative detection systems and assays for potency measurement should be considered, especially if the production of antibodies against the target / POI (protein of interest) is challenging.

Under development: Antibody-independent potency testing concept





EIC: Extracted ion chromatogram; PLA: Software tool

# THANK YOU

