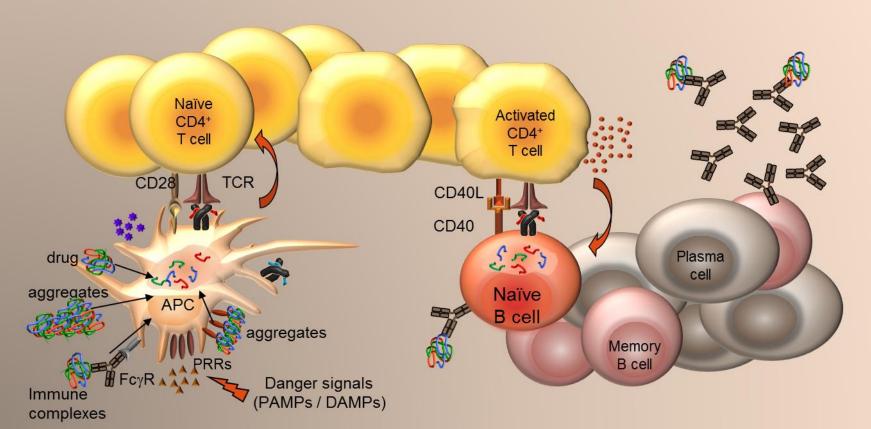


Biomedical Research Preclinical Safety

In vitro assessments of Immunogenicity

Hannah Morgan CASSS CMC Strategy Forum Europe: Immunogenicity Scientific Session 16 October 2023 Stockholm, Sweden

"This presentation includes Novartis confidential information. Please do not photograph, distribute, share or forward."



How do we define immunogenicity?

- Immunogenicity is the ability of a particular substance (i.e. antigen) to induce a humoral- or cellular- immune response
- However, in the biotherapeutics field:
 - Immunogenicity is used to describe the formation of anti-drug antibodies (ADAs) against a protein-based therapeutic
- The development of immunogenicity is usually triggered by sequence and/or structural differences between a 'foreign' biotherapeutic and the body's natural protein
- As most biotherapeutics contain unique epitopes immune system recognition results in an immune response to the therapeutic with varying incidence and magnitude

UNOVARTIS | Reimagining Medicine

The immune response to therapeutic proteins requires a complex interplay of different immune cell subsets

Multiple factors need to be taken into consideration to define IG risk

Patient and Disease Related Factors

- Indication
- Route of administration
 - Dosing frequency
- Presence of pADA
- Potential for crossreactivity/neutralization of endogenous molecules

Formulation

- Molecule valency
- Sequence similarity to human or non-human proteins
- Aggregation, impurities, PTMs
- Presence of mutations, nonnatural junctions, repetitive structures or neoepitopes

Molecule Related Factors

Target or MoA Related Factors

- Membrane bound vs
 soluble
- Target internalization
- Target valency

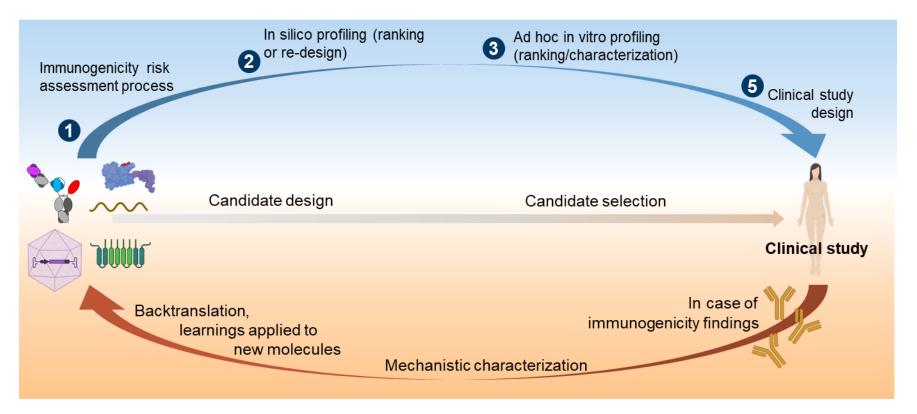
UNOVARTIS

Agonism vs antagonism

5 CASSS CMC Strategy Forum Europe 2023

Reimagining Medicine

Immunogenicity Risk Classifications


IG Risk = Probability x Consequences

Classification	Probability	Efficacy Consequences	Safety Consequences
Tier 1 (low risk) Probability – Low Safety – Low	No mechanistic flag for the generation of ADA in human e.g. mAb against soluble targets	Possible	None to minimal potential to elicit clinical consequences
Tier 2a (low-intermediate risk) Probability – High Safety – Low	Mechanistic flag for the generation of high ADA levels in human e.g. mAb against receptor target internalized by APCs	Possible	None to minimal potential to elicit severe clinical consequences
Tier 2b (intermediate-high risk) Probability – Low Safety – High	No mechanistic flag for the generation of ADA levels in human	Possible	Potential to elicit adverse clinical consequences e.g. thromboembolism, anaphylaxis, immune activation e.g. targeting receptors on platelets, mast cells, cytokine- producing cells that could be cross-linked/activated by ADA
Tier 3 (high risk) Probability – High Safety – High	Mechanistic flag for the generation of high ADA levels in human e.g. receptor target internalized by APCs; modified human protein	Possible	Potential to elicit severe adverse clinical consequences e.g. neutralization of endogenous counterpart with non- redundant function

>IG Risk classification guides the selection of the in vitro IG assays used for each project

U NOVARTIS | Reimagining Medicine

Immunogenicity strategy for biotherapeutics

U NOVARTIS |

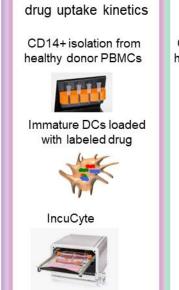
Reimagining Medicine

7 CASSS CMC Strategy Forum Europe 2023

In vitro immunogenicity potential assessment platforms at Novartis

DC assay Evaluation of DC maturation potential

CD14+ isolation from healthy donor PBMCs



Immature DCs loaded with drug

Flow cytometry

DC uptake assay

Evaluation of

MAPPs assay Identification of potential T epitopes

CD14+isolation from healthy donor PBMCs

Immature DCs loaded with drug

Peptide isolation and nano LC-MS/MS

T cell assay T cell proliferation and activation

healthy donor PBMCs

CD28 proliferation

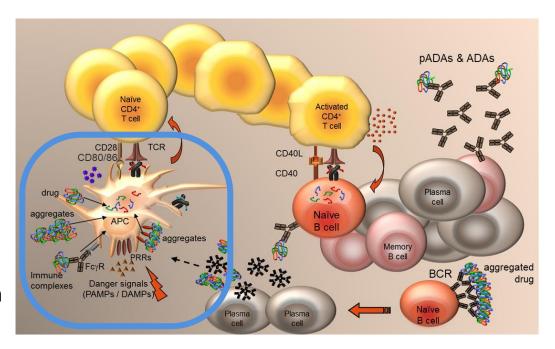
Flow cytometry

SeroPro assay Serological profiling of drug candidates

> Patient- or healthy donor sera

Screening for preexisting or induced drug-specific antibodies

ELISA

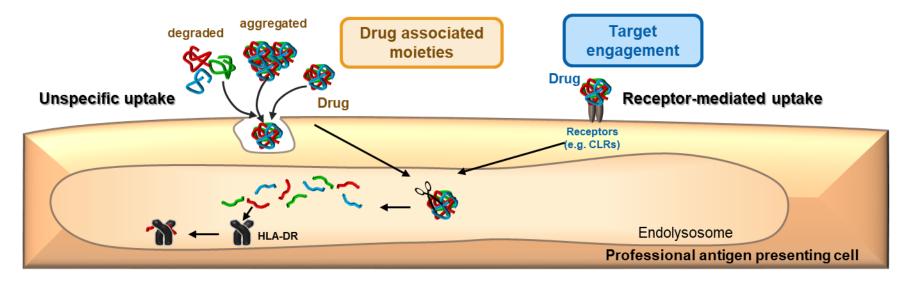


NOVARTIS | Reimagining Medicine

Assays focussing on Antigen Presenting Cells

Professional Antigen Presenting Cells (APCs)

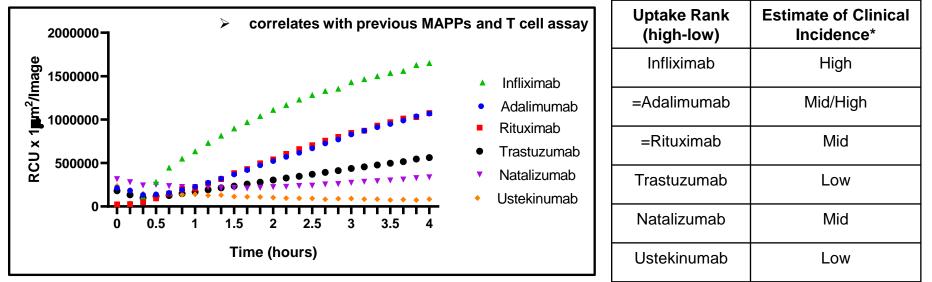
- Sentinels of the immune system
- Specialized in antigen uptake, processing and presentation
- Expression of HLA class II
- These cells are used to address questions around antigen presentation, maturation signals and antigen uptake



UNOVARTIS | Reimagining Medicine

DC uptake assay

Detection of:


 Enhanced antigen uptake due to drug associated moieties or formats or target engagement as a risk factor for increased antigen presentation

U NOVARTIS |

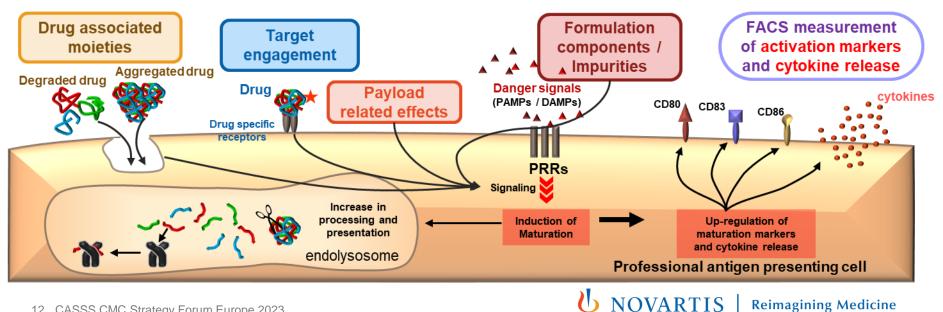
Reimagining Medicine

DC uptake results based on real-time live cell imaging analysis

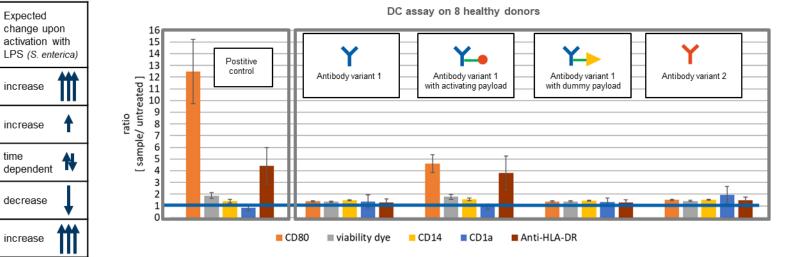
b NOVARTIS

Reimagining Medicine

Exploratory assay to determine the uptake rate of fluorophore labeled biotherapeutics


DC uptake was monitored over 4 hours every 10 min. Results are based on the average of **10 human donors**.

11 CASSS CMC Strategy Forum Europe 2023


DC maturation assay

Detection of:

- drug associated & formulation mediated risk factors
- stimulatory effects mediated by target engagement on DCs or candidate payload effects

Immune stimulating antibody conjugate drives DC maturation as mode of action

* CD14 up- or down- regulation depends on the type of stimulus used for activation and the length of activation

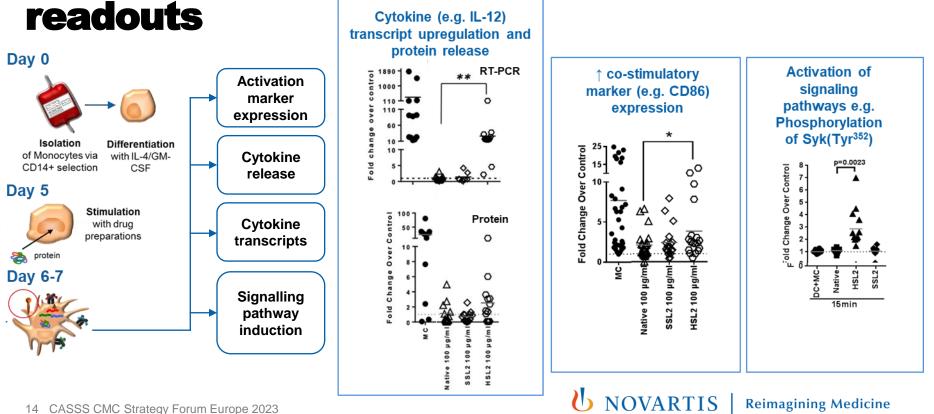
time

Marker

CD80

Cell

death

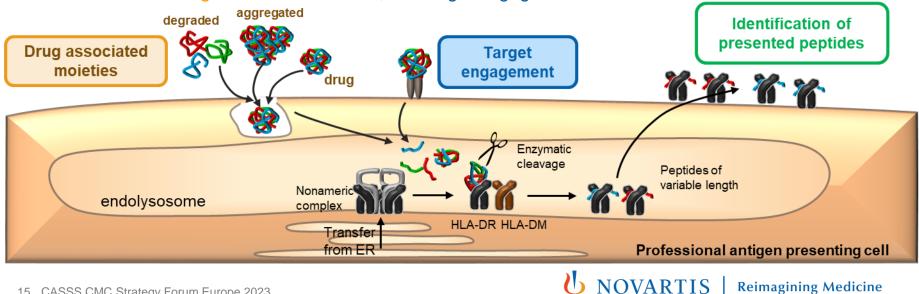

CD14

CD1a

HI A-DR

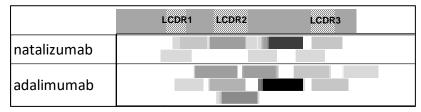
> payload effect: Stimulator induces maturation as expected

Aggregated infliximab induced DC maturation measured by orthogonal


Morgan et al. 2019; Front Immunol 10:601

ABIRSK

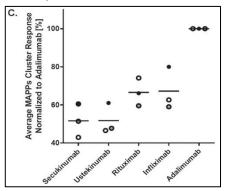
MAPPs assay (MHC-associated Peptide Proteomics)


Detection of:

- naturally processed HLA-DR associated peptides for protein design, ranking, mechanistic studies
- Effect of PTMs, drug associated moieties, and target engagement

MAPPs assay output examples


1. Example of a presented cluster heatmap for two mAbs;


 color coding represents cluster appearance among donors

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

The grayscale representation indicates how many donors showed peptides in the respective area.

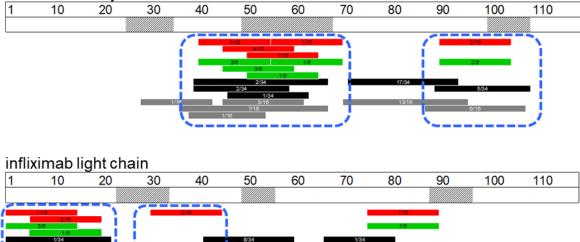
2. Example of normalized cluster numbers across mAbs

The number of clusters does not directly translate into immunogenicity in human but higher numbers of clusters increase the immunogenicity potential of a biotherapeutic.

The impact of the "humanness" of the sequences plays an additional role, since the level of immune tolerance towards the presented peptides can differ.

MABS 2016, VOLL 8, NO. 3, 536–550 http://dx.doi.org/10.1080/19420862.2015.1136761	Taylor & Francis Taylor & Francis Group		
REPORT	a OPEN ACCESS		
Secukinumab, a novel anti–IL-17A antibody, shows low immunogenicity potential in human in vitro assays comparable to other marketed biotherapeutics with low clinical immunogenicity			

Anette Karle, Sebastian Spindeldreher, and Frank Kolbinger


Novartis Pharma AG, Basel, Switzerland

U NOVARTIS

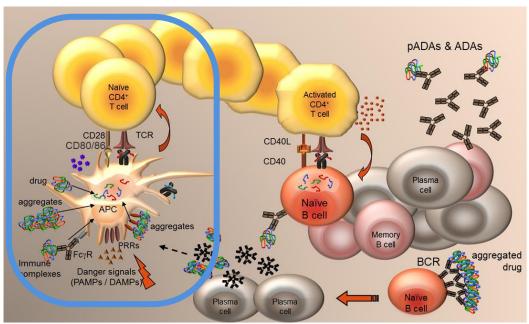
T cell epitopes of infliximab

infliximab heavy chain

T cell epitopes from healthy donors; N=15 T cell epitopes from ADA+ patients; N=6 MAPPs on native material with healthy donors (n=34) MAPPs on aggregated material with healthy donors (n=16)

MAPPs assay performed by lab A. Karle at Novartis. T cell assay performed by lab Bernard Maillère at CEA Paris.

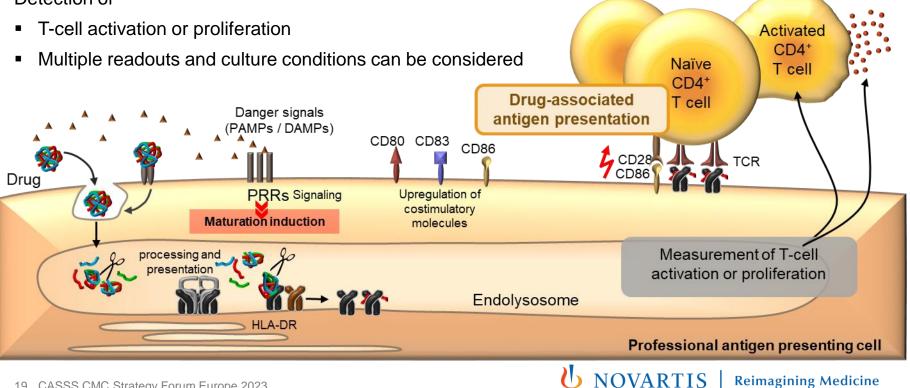
Different donor sets were used, therefore no perfect match expected due to different HLA distributions


NOVARTIS | Reimagining Medicine

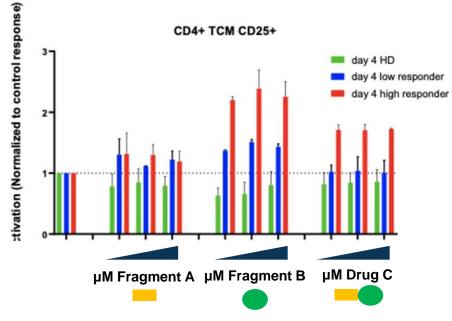
- MAPPs clusters nicely align with T cell epitopes from healthy donors and ADA-positive patients.
- Infliximab stressed under exaggerated temperature conditions (55°C; 24h) shows increased antigen presentation in several sequence areas.

Assays focussing on APC / T cell interaction

CD4+ T helper cells


- Link between APCs and ADA producing B cells
- Essential for B cell activation and Ig class switch
- These cells are used to address questions around T cell recognition.

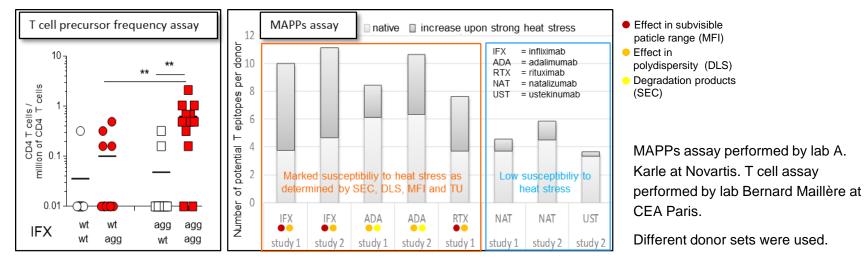
UNOVARTIS | Reimagining Medicine


T Cell Assays

Detection of

Memory T cell assay output

 Patients with high ADA responses to Drug C show clear T cell memory responses to Drug C or its component parts 10 months after treatment.



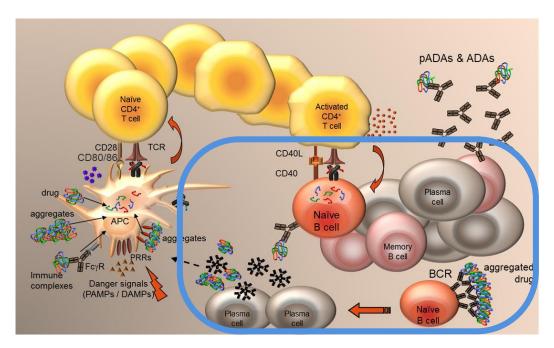
- Fragment A, Fragment B and Drug C induced slight total CD4⁺ and memory T cell activation (T_{CM}) in high ADA responders.
- Healthy volunteers (HD) did not show any T cell responses to any molecule.

Reimagining Medicine

U NOVARTIS |

Aggregated infliximab increases peptide presentation and induces T cells

 MAPPs assay: mAbs with relatively higher immunogenicity either showed elevated baseline peptide presentation and/or strong increase in presentation upon stress, while mAbs with rather low clinical immunogenicity show low baseline presentation and minor increase upon stress.

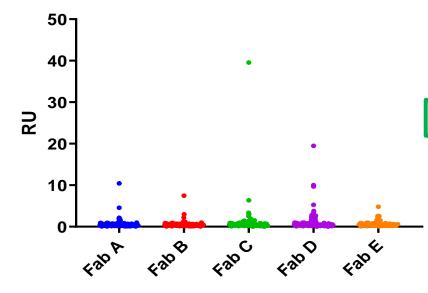

U NOVARTIS | Reimagining Medicine

• T cell assay: some heat stressed mAbs induce large increase in pre-existing T cells.

Assays focussing on B Cells


B Cells and Plasma Cells

- Drivers of the humoral response
- Production of ADAs (druginduced and pre-existing)
- Class switch from IgM to IgG ADA production is only possible if activated by drug specific T cells



UNOVARTIS | Reimagining Medicine

Serological profiling assay

SeroPro – pre-existing antibody (pADA) assay on Fabs– anti-human IgG Fc response

	Fab A	Fab B	Fab C	Fab D	Fab E
# of samples higher than threshold:	6/94	6/94	7/94	15/94	5/94
% of samples higher than threshold:	6.38	6.38	7.45	16	5.32
Blank value substracted (PBS, Rexxip H):	0.03	0.04	0.02	0.02	0.04
mixADA-Threshold:	1.43	1.13	2.62	1.82	1.83

- Fab D has the highest frequency of donors with a positive anti-drug response
- Deprioitised from development

UNOVARTIS | Reimagining Medicine

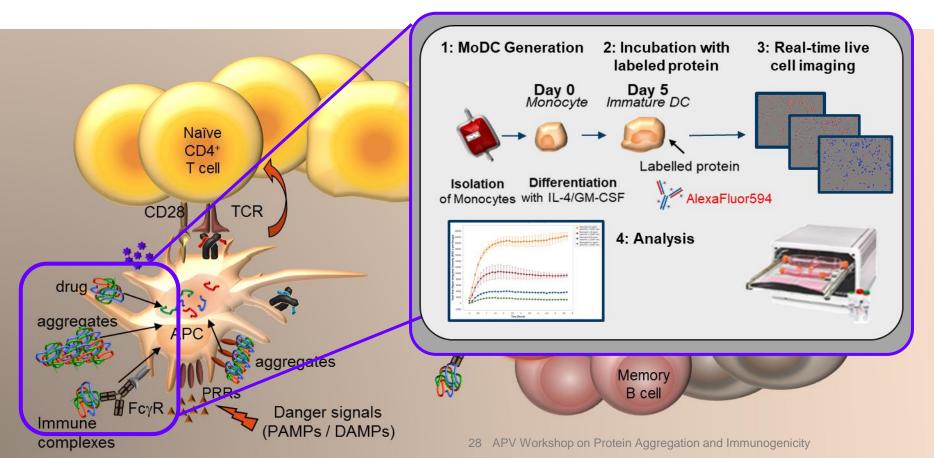
24 Business Use Only

Pro's/Con's of commonly applied assays for immunogenicity assessment

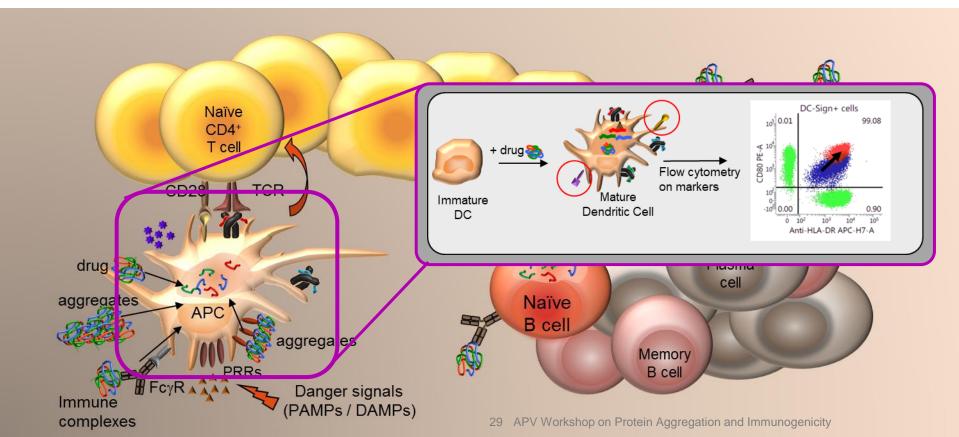
	MAPPs assay	DC assays	T cell assays	B cell assays
Pros	 Allows ranking of different drug candidates Reveals only relevant binders Mimicry of processing and presentation of in vivo situation Effect of PTMs and aggregation can be assessed Only moderate purity necessary Good correlation with clinical immunogenicity 	 Allows ranking of different drug candidates Can be used to assess drug intrinsic and formulation related danger signals Effect of PTMs and different formulations can be assessed Orthogonal readouts allow the interrogation of mechanisms of DC activation Medium throughput available dependent on readout of activation/uptake 	 Allows ranking of different drug candidates Effect of PTMs and different formulations can be assessed As compared to the other tools, it is the closest to the in vivo situation Can be used with patient samples to allow for back-translation/correlation to the clinical situation Good correlation with clinical immunogenicity 	 Allows ranking of different drug candidates Can be used with patient samples to allow for back- translation/correlation to the clinical situation Medium/high throughput assay available
Cons	 Does not predict T cell activation Time-consuming (about 2 months per project) Assay sensitivity may not be sufficient to detect the impact of CQAs 	 Does not predict T cell activation Very high purity of protein necessary Correlation to clinical IG not yet well understood Assay sensitivity may not be sufficient to detect the impact of CQAs 	 Potential interference of drug function Time-consuming (3 months / project) High purity of protein necessary Assay sensitivity may not be sufficient to detect the impact of CQAs 	 Impact of pre-existing antibodies on the clinical response is not well understood Impact of CQAs cannot be addressed

- At Novartis, the selection of in vitro immunogenicity potential assays for each project are selected based on the initial IG risk-assessment reflecting the relevant target/molecule related biology
- Different cell-based assays can be applied to evaluate and mechanistically investigate the immunogenicity potential of biotherapeutics, with good correlation to the clinical situation
- The impact of certain CQAs (e.g. aggregation, glycosylation) on the immunogenic responses can be assessed in these in vitro assays although sensitivity and translatability is still under evaluation

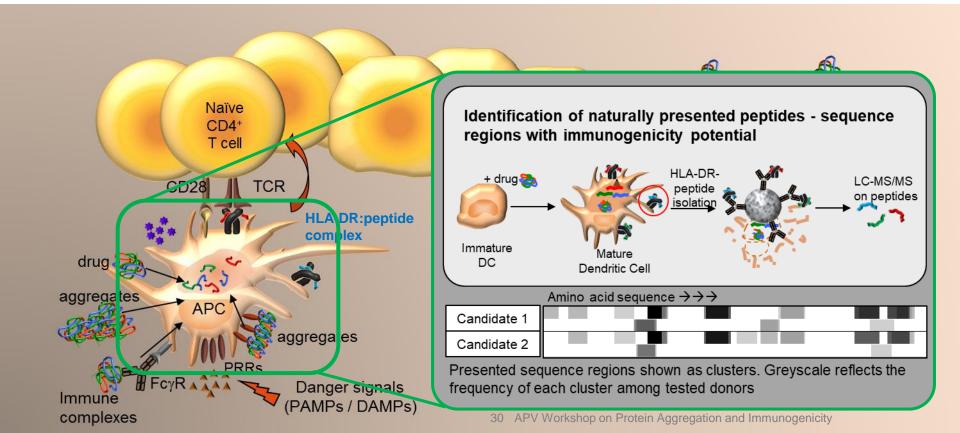
- Support candidate design and selection
- Understand immunogenicity mechanisms / risk factors
- Root cause analysis of adverse events in internal clinical trials


UNOVARTIS | Reimagining Medicine

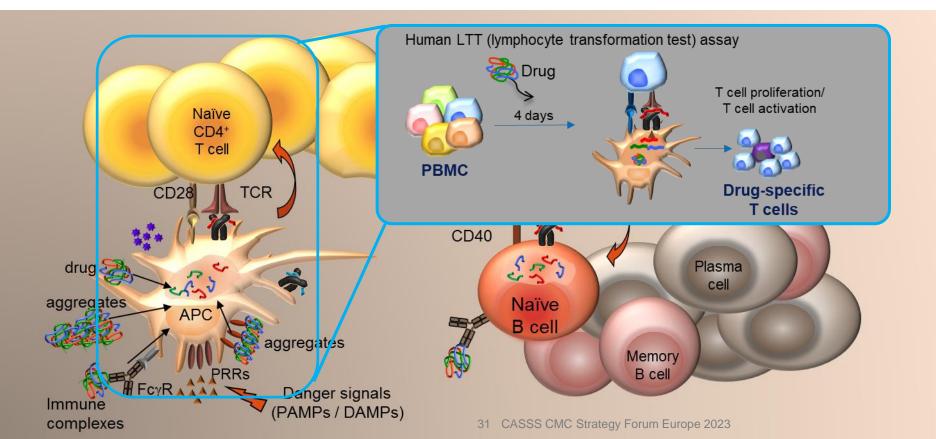
 \mathbf{x} **YXXYXXXXX TTTTTTTT YXXXXXXXX** YYYYYYYYY LYYLYYLYLY YYYYYYYYY LYYLYYLYL **XXXXXXXXXX** YYXYYXYYY YXXYXXXXX **XXXXXXXXXX** YYXYYXYYY **XXXXXXXXXX** YYXYYXYYY **XXXXXXXXXX** YYYYYYYY **XXXXXXXXXX** YYYYYYYYY **XXXXXXXXXX XXXXXXXXXX XYXXYXXXX** ŶŶĹŶŶĹŶŶŶ ĸŦĸĸŦĸĸŦĸ ŶŶĸŶŶĸŶĸŦĸŶ ĸŶŶĸŶŶĸŶĸ YYXYXXYYY YXXYXXXYX YYXYXXYYY LYYLYYLYLY YYYYYYYYY XXXXXXXXXXX YYXYYXYYY **YXXXXXXXX XXXXXXXXXX** \mathbf{x} YXXXXXXXXX YYYYYYYYY **XXXXXXXXXX** YYYYYYYYY


Thank you

UNOVARTIS | Reimagining Medicine


DC uptake assay

DC maturation assay



MHC Associated Peptide Proteomics (MAPPs)

Multiple different formats exist in the literature and can be applied for IG assessment

T Cell Assays (PBMC format)

