

Clinical perspectives on immunogenicity of biotherapeutics

Florian Deisenhammer – Innsbruck Medical University

Clinical Impact =

Severity of Consequences X Probability of Occurrence

Immunogenicity

Immunogenicity is the ability of a particular substance, such as an antigen or epitope, to provoke an immune response in the body of a human or animal. In other words, **immunogenicity is the ability to induce humoral and/or cell-mediated immune responses**.

Wanted immunogenicity is typically related with vaccines, where the injection of an antigen (the vaccine) provokes an immune response against the pathogen (virus, bacteria...) aiming at protecting the organism. Vaccine development is a complex multistep process, immunogenicity being at the center of the vaccine efficiency.

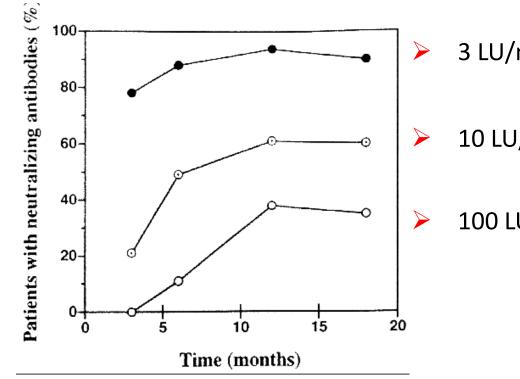
<u>Unwanted immunogenicity</u> is an immune response by an organism against a therapeutic antigen (ex. recombinant protein, or monoclonal antibody). <u>This reaction leads to production of anti-drug-antibodies</u> (ADAs) inactivating the therapeutic effects of the treatment and, in rare cases, inducing adverse effects. The prediction of the immunogenic potential of novel protein therapeutics is thus a challenge in biotherapy

https://en.wikipedia.org/wiki/Immunogenicity

Overview

Drug	Indication	Type of product	ADA frequency	ADA consequences
IFNb	Multiple Sclerosis	Cytokine, native protein	1-30%	Breakthrough disease – alternative Rx
FVIII	haemophilia	Coagulation factor, native protein	20-30%	Breakthrough disease – Removal of ADA
Acid alpha- glucosidase (GAA)	Mb. Pompe	Enzyme, native protein	Depends on CRIM status	Breakthrough disease – Removal of ADA
Еро	anaemia	Enzyme, native protein	Eprex only	PRCA
Adalimumab	RA, IBD	Human mAb, anti-TNF	10-25%	Breakthrough disease – alternative Rx
Infliximab	RA, IBD	Chimeric mAb, anti- TNF	10-50%	Mostly IRA
Natalizumab	Multiple Sclerosis	Humanized mAb, anti VLA-4	5%	IRA, breakthrough disease – alternat. RX
Alemtuzumab	MS	Humanized mAb, anti-CD52	93%	IRA?
Bevacizumab	Cancers	Monoclonal, anti-VEGF	?	?

Anaphylaxis type 1


- Infusion reaction
- → Cross-reactivity
- → Adverse events
- → Altered PK
- Loss/lack of efficacy
- No effect detected

Wide range of ADA in rheumatology

	Biological Agent	Abbreviation	ADAs% Min–Max	Nabs% Min–Max	Ref
	Infliximab	IFX	0-83.0	Not reported	[5,42]
	Adalimumab	ADL	0-54.0	Not reported	[5,42]
TNFi	Golimumab	GLM	0-19.0	Not reported	[5]
	Etanercept	ETA	0-18.3	Not reported	[5,42]
	Certolizumab pegol	CZP	3-37.0	Not reported	[5]
R coll tonnotion a biologica	Rituximab	RTX	23.1-50.0	Not reported	[49,50]
B cell-targeting biologics	Belimumab	BLM	0-4.8	Not reported	[51]
T cell activation inhibitor/co-stimulation modulator	Abatacept	ABT	0.9–4.1	0-0.4	[52–54]
IL-6R inhibitors	Tocilizumab	TCZ	0.7-2.0	0.8-1.3	[55,56]
	Sarilumab	SLM	1.4-12.3	0-10.8	[57,58]
	Secukinumab	SCK	0-1.0	Not reported	[5,59-61
IL-17A inhibitors	Ixekizumab	IXK	1.7-9.0	Not reported	[62]
	Brodalumab	BDL	1.4-2.7	Õ	[59,63]
	Ustekinumab	UTK	1.0-11.0	Not reported	[5,42]
U 12/22 and U 22-10 inhibitant	Guselkumab	GKM	4.1-14.7	0.1-0.6	[64]
IL-12/23 and IL-23p19 inhibitors	Risankizumab	RZM	14.1-31.0	2.1-16.0	[64]
	Tildrakizumab	TZM	6.51-18.0	2.5-3.2	[64]
II. 1 inhihitana	Anakinra	ANA	<1	Not reported	[65,66]
IL-1 inhibitors	Canakinumab	CKM	3.1	ô	[67]

Sensitivity Of NAB Assay Depends On IFN Used In The System

3 LU/ml (high sensitivity)

10 LU/ml (medium sensitivity)

100 LU/ml (low sensitivity)

N=40, Betaferon 8MIU

Known factors (1/2)

ADA development has a complex multifactorial etiology

- Genetic factors influence the threshold for developing ADA
 - HA:
 - ✓ FVIII gene mutation type:
 - large deletions, nonsense mutations, and gene inversions => higher risk
 - missense mutations => lower risk Ref.: Miller et al. 2012; Oldenburg et al. 2002
 - V Polymorphisms in immune response genes: IL-10, TNF-α, CTLA-4, HMOX-1 <u>Ref.</u>: Astermark et al.; Repessé et al. 2013
 - ✓ HLA class I and HLA class II alleles DQ and DR15 Ref.: Hay et al. 1997; Oldenburg et al. 1997
 - ✓ Family history of inhibitors => higher risk Ref.: Astermark et al. 2001, Chalmers et al. 2007, Goudemand et al. 2006
 - Ethnicity: Blacks and Hispanics => higher risk <u>Ref.</u>: Astermark et al. 2005; Miller et al. 2012; Ragni et al. 2009
 - MS:
 - ✓ HLA class II haplotypes (HLA-DRB1) <u>Ref.</u>: Hoffmann et al. 2008; Buck et al. 2011

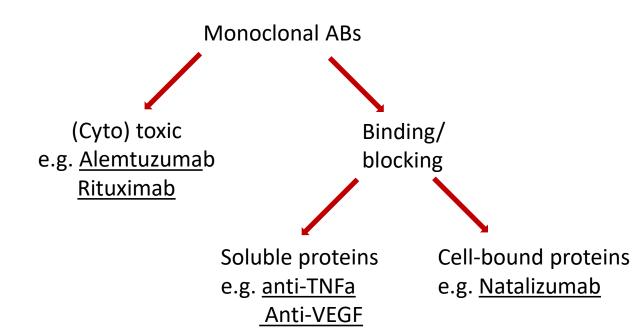
Known factors (2/2)

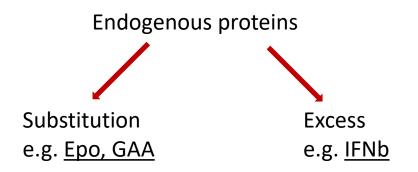
- Environmental factors determine whether sufficient immune activation occurs to overcome the threshold for ADA formation
 - HA
 - Periods of intensive treatment (bleeds, surgery) => higher risk
 - RA / IBD
 - Concomitant treatment with immunosuppressant => lower risk
- Disease-related factors, themselves influenced by genetic and environmental factors, may also mediate the risk of ADA development:
 - MS
 - ✓ Oligoclonal immunoglobulin G (IgG) band-negativity => lower risk
 - RA
 - ✓ High disease baseline activity => higher risk
 - Pompe
 - ✓ CRIM status

Ref.: ter Avest et al. 2008; Gouw et al. 2007

Ref.: Bendtzen et al. 2006; Lee et al. 2012

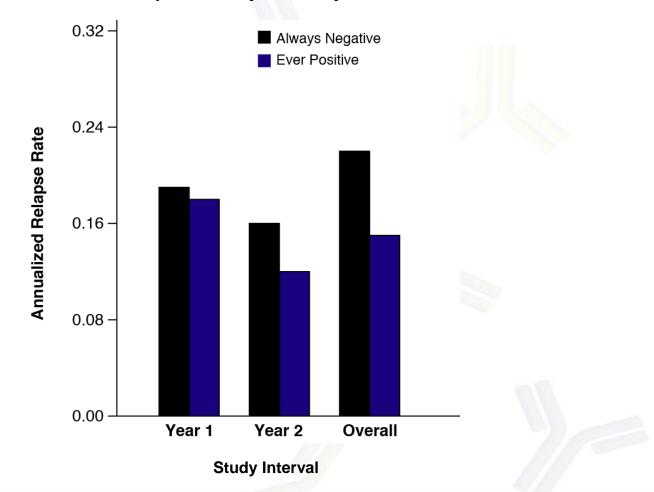
Ref.: Lundkvist et al. 2010


Ref.: Bartelds et al. 2011


Kishnani PS et al Mol Genet and Metab 2010

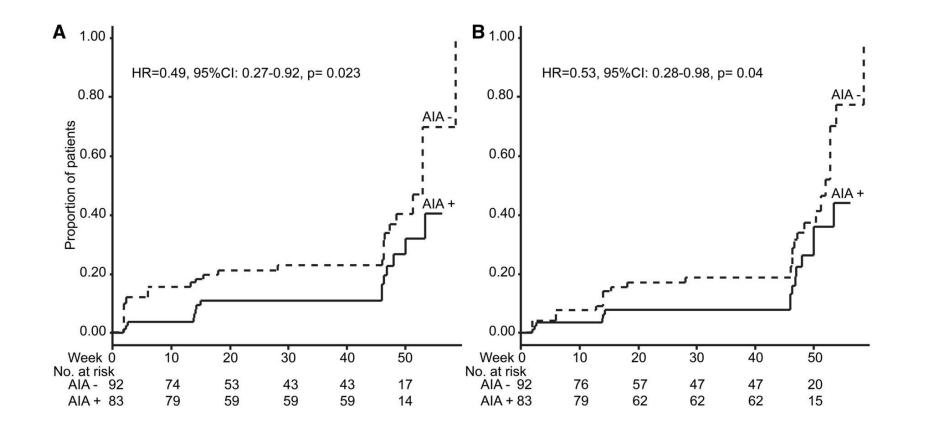
Biologicals by MoA

Anti-alemtuzumab Antibodies in CARE-MS I


- Anti-alemtuzumab antibodies are known to develop in response to alemtuzumab administration
 - Anti-drug antibodies have negatively impacted some MS treatments
- 87% of patients were "ever positive" for antialemtuzumab antibodies
- 6.7% of patients with anti-alemtuzumab antibodies were "always negative" for inhibitory antibodies
- Correlations sought with anti-alemtuzumab status and titer
 - Pre-treatment
 - Peak within-treatment
- Anti-alemtuzumab antibody status was not correlated with relapse rate (Figure), risk of sustained accumulation of disability (SAD), imaging endpoints, safety outcomes, or pharmacodynamics

The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° [115303], resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution.

www.imi.europa.eu


Relapse Rate by Antibody Status

Rheumatoid arthritis infliximab:

Sustained minimal disease activity and sustained remission. Sustained minimal disease activity (A) and sustained remission (B) in patients classified according to anti-infliximab status during the 52-week follow-up.

ABIR:SK Clinical consequences of anti-Infiximab Abs in IBD

Fig. 3

	ATI	+ve	AT	l –ve		Risk ratio	Risk ratio
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95% CI	M-H, fixed, 95% Cl
Farrell et al. [18]	10	25	2	28	3.5%	5.60 [1.35, 23.15]	
Hanauer et al. [11]	29	80	71	297	56.4%	1.52 [1.06, 2.16]	
Maser et al. [4]	11	22	5	26	8.6%	2.60 [1.07, 6.34]	
Miele et al. [12]	4	12	4	22	5.3%	1.83 [0.56, 6.05]	
Rutgeerts et al. [14]	5	14	21	215	4.8%	3.66 [1.62, 8.23]	
Rutgeerts et al. [14]	6	12	17	176	4.1%	5.18 [2.51, 10.68]	
Sands et al. [15]	13	44	13	80	17.3%	1.82 [0.93, 3.57]	
Total (95% CI)		209		844	100.0%	2.07 [1.61, 2.67]	•
Total events	78		133				
Heterogenity: $\chi^2 = 13.32$, d.f.	= 6 (P= 0.04); I ²	²=55%					
Test for overall effect: Z= 5.6	7 (P<0.00001)					0.	0.01 0.1 1 10 10
							Less infusion reactions More infusion reactions

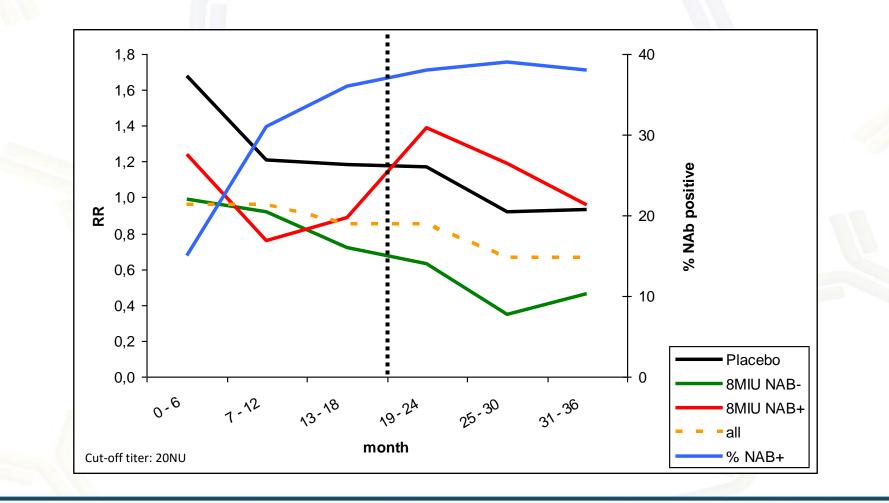
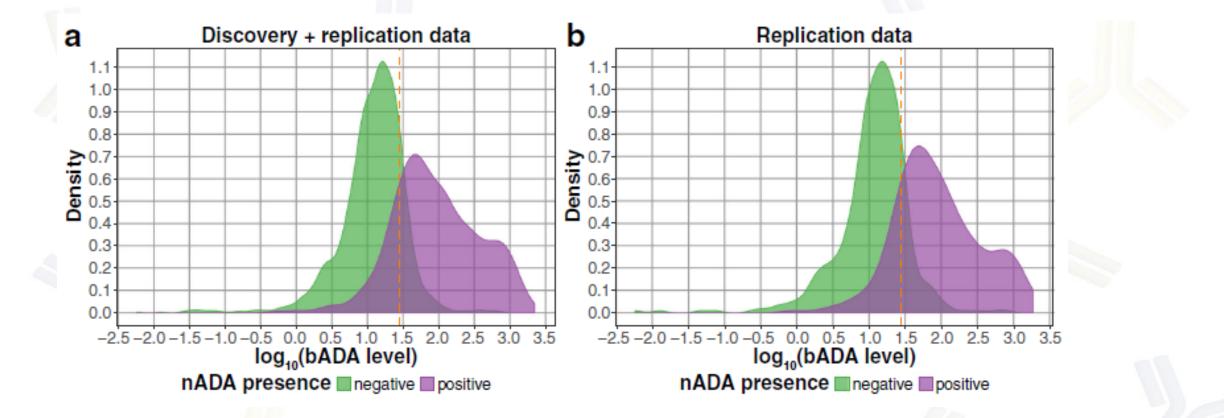

Rates of infusion reactions

Fig. 4

	Positi	ve ATI	Negati	ve ATI		Risk ratio	Risk ratio
tudy or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95% Cl	M-H, fixed, 95% Cl
insworth et al. [20]	10	18	9	15	4.9%	0.93 [0.52,1.66]	· -+
andon et al. [21]	3	6	11	13	3.5%	0.59 [0.26,1.36]	
olombel et al. [9]	8	14	12	17	5.4%	0.81 [0.47, 1.40]	-∗
arrell <i>et al.</i> [18]	0	25	30	43	11.3%	0.03 [0.00, 0.43]	
lanauer <i>et al.</i> [11]	62	80	223	297	47.0%	1.03 [0.90, 1.18]	•
laser et al. [4]	14	22	17	26	7.7%	0.97 [0.64, 1.48]	+
utgeerts et al. [14]	3	14	3	36	0.8%	2.57 [0.59, 11.26]	I +
utgeerts et al. [14]	11	19	45	79	8.7%	1.02 [0.66, 1.56]	∣ +
ands et al. [15]	14	44	25	80	8.8%	1.02 [0.59, 1.75]	↓ +
eow et al. [3]	8	44	3	22	2.0%	1.33 [0.39, 4.54]	I — <mark> -</mark>
otal (95% CI)		286		628	100.0%	0.90 [0.79, 1.02]	
otal events	133		378				
leterogeneity: $\chi^2 = 14.32$, d.f. =	9 (P=0.11);	2=37%					
est for overall effect: Z=1.64 (P=0.10						0.001 0.1 1 10 1000
							Decreased remission Increased remission

Rates of clinical remission. TI, anti-infliximab antibodies

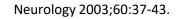
ABRESK NAB timeline (Betaferon trial)


IFNB study group Neurology 1996;47:889-894

NABs and BABs

Andlauer et al. BMC Medicine (2020) 18:298

ABIRES Titre-dependency of clincal effects


Table 4 Percentage increase in relapse rates for eventually NAB+ subgroups in low- and high-NAB+ periods relative to NAB- periods*

	Increase in relapse rate								
	Low N	AB+, cutoff tite	r 20		High NAB+				
Cutoff titer	% Increase	95% CI	p Value	% Increase	95% CI	p Value			
"Once positive, always positive"									
100, n = 57	48	10, 98	0.01	39	0, 94	0.05			
200, n = 45	41	5, 90	0.02	70	21, 140	0.002			
400, n = 33	41	6, 89	0.02	115	54, 200	< 0.001			
"All switches considered"									
100, n = 57	29	-5,75	0.10	21	-10, 62	>0.20			
200, n = 45	23	-9,65	0.17	46	7, 99	0.02			
400, n = 33	22	-8, 62	0.17	82	37, 140	< 0.001			

Patient counts refer to patients with high-NAB+ status, which differ from counts in eventually NAB+ subgroups for respective cutoff titers as no confirmation was required.

* Definition of low-NAB+ periods (confirmation required) refers to cutoff titer of 20. Definition of high-NAB+ periods (no confirmation required) refers to respective cutoffs.

NAB = neutralizing antibodies.

innovative medicines

nitiative

etpia

Time of First Positive Result

In Patients Who Developed Any Antibodies

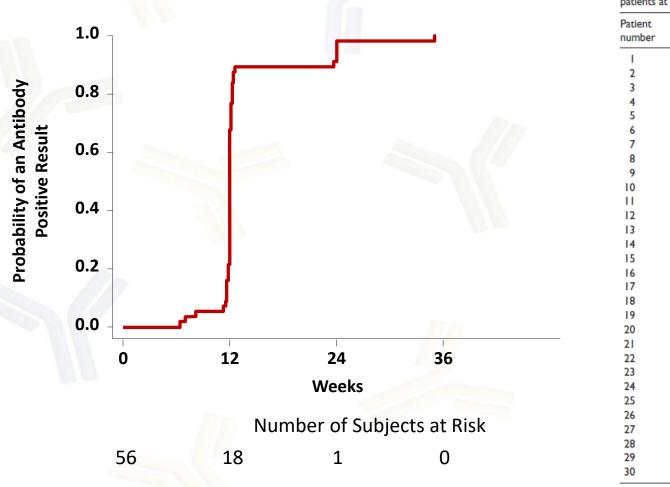
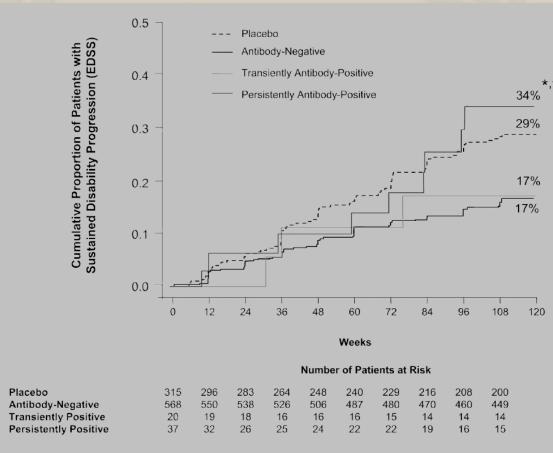



Table 3. The antibody titres (in ATU) of 30 antibody-positive patients at three months (\pm 0.2) time points.

atient ATU		Positivity
number	(three months)	Positivity
1	4	Transient
2	7	Transient
3	8	Transient
4	8	Transient
5	9	Transient
6	10	Persistent
7	10	Transient
8	12	Transient
9	16	Transient
10	18	Transient
11	25	Transient
12	36	Persistent
13	55	Transient
14	113	Persistent
15	134	Transient
16	156	Persistent
17	176	Persistent
18	393	Persistent
19	418	Persistent
20	433	Persistent
21	887	Persistent
22	929	Persistent
23	1002	Persistent
24	1040	Persistent
25	1523	Persistent
26	2212	Persistent
27	2236	Persistent
28	2442	Persistent
29	2677	Persistent
30	3293	Persistent

Mult Scler. 2012 Oct;18(10):1493-9

EDSS progression (95% CI) by antibody status over 2 years of natalizumab treatment

* $p \le 0.05$ vs. antibody-negative patients *p = 0.66 vs. placebo

etp

EABIRESK

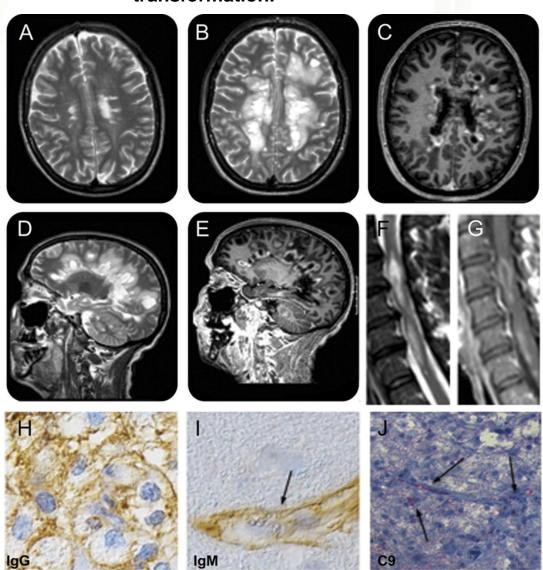
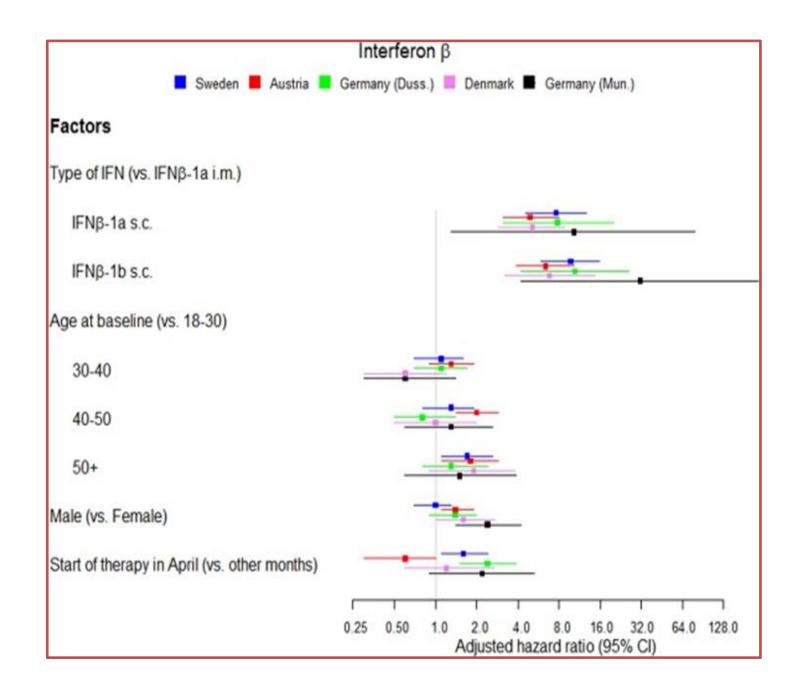
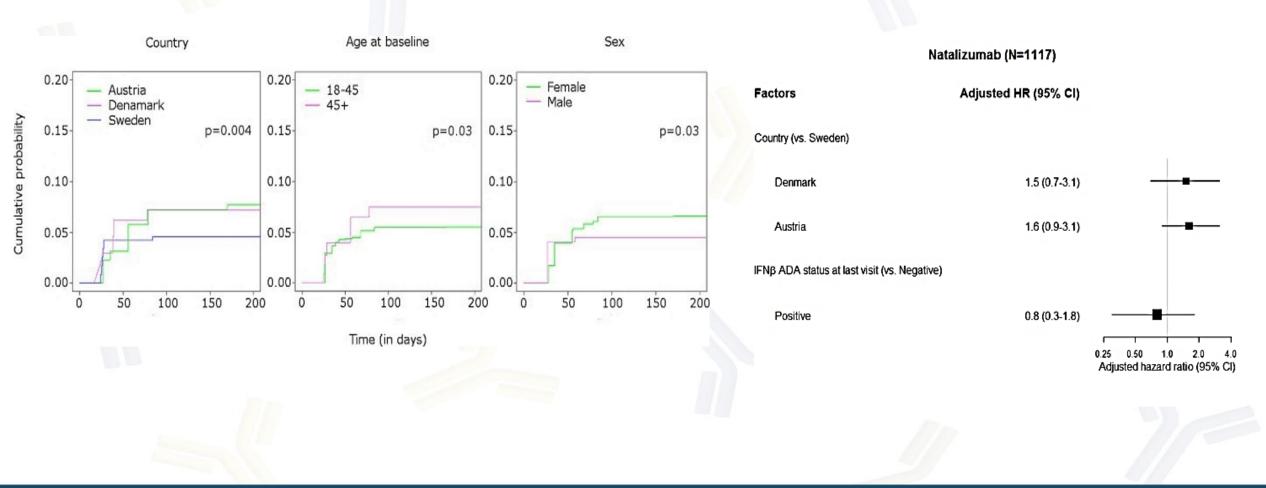

WWW.ABIRISK.EU

Figure Imaging and immunostaining(A–G) MRIs showing aspects of the malignant transformation.

Rare severe consequences of ADA in Natalizumab treatment of MS


Patient developed ADA against Natalizumab within 2 months and severe disease rebound after 6 months followed by fatal course of brain inflammation.

Anders Svenningsson et al. Neurology 2013;80:965-967



ABIRISK.EU

IFNb ADA and risk for anti-Natalizumab ADA

etpia

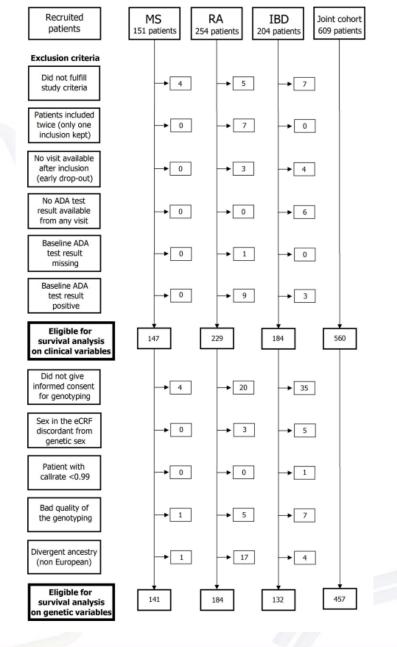
Common factors prospective study

Table 1. Demographics of the ABIRISK cohorts. Abbreviations: ABIRISK, Anti-Biopharmaceutical Immunization: prediction and analysis of clinical relevance to minimize the RISK; BMI, body mass index; IBD, inflammatory bowel disease; IQR, interquartile range; MS, multiple sclerosis; RA, rheumatoid arthritis; SD, standard deviation.

		IBD, N = 184	MS, N = 147	RA, N = 229
Age, mean (SD)		36.9 (13.7)	35.1 (9.7)	54.2 (13.7)
Sex, N (%)	Female	89 (48.4)	103 (70.1)	176 (76.9)
	Male	95 (51.6)	44 (29.9)	53 (23.1)
Smoke, N (%) (cigarettes per day)	0	125 (68.3)	106 (72.6)	169 (74.8)
	1-10	34 (18.6)	18 (12.3)	33 (14.6)
	11-40	24 (13.1)	22 (15.1)	24 (10.6)
BMI, N (%)	Underweight	17 (9.3)	5 (3.4)	6 (2.7)
	Normal	114 (62.3)	84 (57.9)	110 (49.3)
	Overweight	40 (21.9)	29 (20)	56 (25.1)
	Obese	12 (6.6)	27 (18.6)	51 (22.9)
Country, N (%)	Austria	0 (0)	29 (19.7)	0 (0)
	Belgium	6 (3.3)	0 (0)	0 (0)
	Czech Republic	0 (0)	50 (34)	0 (0)
	France	150 (81.5)	0 (0)	136 (59.4)
	Germany	0 (0)	27 (18.4)	0 (0)
	Israel	28 (15.2)	0 (0)	0 (0)
	Italy	0 (0)	0 (0)	9 (3.9)
	Netherlands	0 (0)	0 (0)	65 (28.4)
	Spain	0 (0)	22 (15)	0 (0)
	Sweden	0 (0)	10 (6.8)	0 (0)
	Switzerland	0 (0)	9 (6.1)	0 (0)
	United Kingdom	0 (0)	0 (0)	19 (8.3)
Follow-up, days; median (IQR)		338.0 (63.5)	358.0 (175.0)	357.5 (158.25)

https://doi.org/10.1371/journal.pmed.1003348.t001

WWW.ABIRISK.EU



etpia

The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° [115303], resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution.

www.imi.europa.eu

ABIRISKEU Timing and frequency of ADA

Table 2. ADA occurrence during 12 months, stratified by disease and by BP therapy. ADA, antidrug antibody; BP, biopharmaceutical product; IBD, inflammatory bowel disease; IFN, interferon; IL, interleukin; IM, intramuscular; MS, multiple sclerosis; RA, rheumatoid arthritis; SC, subcutaneous; TNF, tumor necrosis factor.

Total N (ADA positive N)		IBD	MS	RA
TNF inhibitors	etanercept			84 (3)
	infliximab	86 (13)		15 (3)
	adalimumab	98 (38)		55 (26)
IFN-beta	IFNb-1a IM		38 (0)	
	IFNb-1a SC		68 (11)	
	IFNb-1b SC		41 (26)	
Anti-CD20	rituximab			31 (16)
Anti-IL6-R	tocilizumab			44 (4)

https://doi.org/10.1371/journal.pmed.1003348.t002

innovative

nitiative

etpia

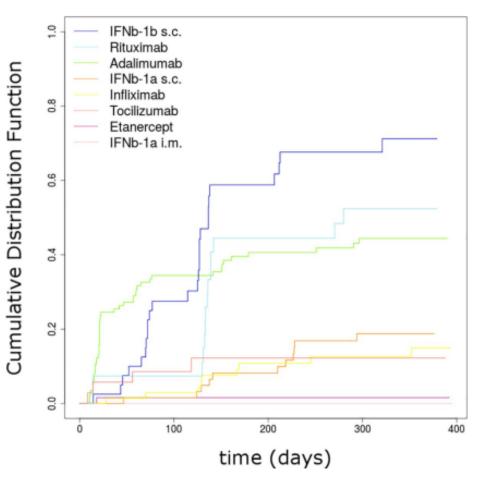


Fig 3. ADA occurrence by BP treatment. ADA, antidrug antibody; BP, biopharmaceutical product; IFNb, interferon beta; IM, intramuscular; SC, subcutaneous.

https://doi.org/10.1371/journal.pmed.1003348.g003

Multivariate Analyses

Table 5. Results of multivariate Cox regression of time to ADAs on infections, immunosuppressants, antibiotics, tobacco smoking, rs10508884 SNP, and HLA (DQA1*05) with stratification on the disease status. ADA, antidrug antibody; CI-, lower 95% confidence interval; CI+, upper 95% confidence interval; HLA, Human Leukocyte Antigen; HR, hazard ratio; SNP, Single-Nucleotide Polymorphism.

N = 457		HR	CI- (0.95)	CI+ (0.95)	p-Value
Tobacco (heavy smokers)	yes	2.150	1.319	3.503	0.002
Infections	yes	2.757	1.616	4.704	0.0002
Immunosuppressants	yes	0.408	0.253	0.657	0.0002
Antibiotics	yes	0.121	0.0437	0.333	4.5×10^{-5}
rs10508884	[Aa]	1.901	1.254	2.883	0.0025
	[aa]	3.804	2.139	6.764	5.4×10^{-6}
HLA (DQA1:05)	[Aa]	1.474	0.983	2.211	0.0605
	[aa]	3.900	1.923	5.976	2.4×10^{-5}

HLA-DQA1*05

В rs10508884 (CXCL12) Cumulative Distribution Function Function Homozygous for the alternative Heterozygous Homozygous for the reference

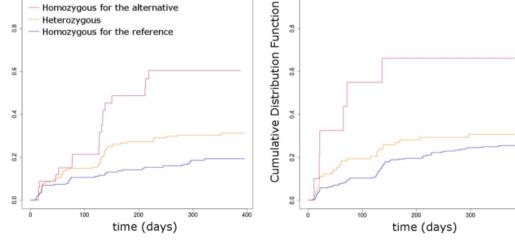


Fig 5. ADA occurrence according to (A) rs10508884 (CXCL12) or (B) HLA-DQA1*05. ADA, antidrug antibody; HLA, Human Leukocyte Antigen.

https://doi.org/10.1371/journal.pmed.1003348.g005

cines Initiative Joint Undertaking under

WWW.ABIRISK.EU

httr

grant agreement n° [115303], resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution. www.imi.europa.eu

Summary

Wide variation of clinical consequences of ADA

Wide variation of ADA frequency

Interference between factors driving disease and factors driving immunogenicity

Assay set up

Underlying disease, age sex

Timing

Common denominators: Smoking, infections, co-medication, some preliminary genetic factors

