

Technical Research & Development

XXXXXXXXXX YYXYYXYYYYイメイイイイイイ $YY \downarrow YY \downarrow YY YY Y$ YYYYYYYYYYYYXYYXY \mathbf{Y} YYXYYXYYYYYXYYXYYI イメイメイメイイ イメイイイイイイ イメイイイイイ イメイイイイイイ YXXYXXXYYXXXYYXYYXYYY

SubQ Bioavailability Considerations

Manuel Sanchez-Felix

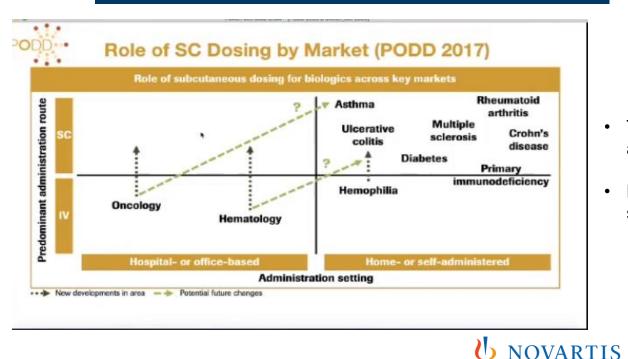
CASSS – CM&C Strategy Forum Europe 17th to 19th October 2022

Introduction

Highlight Trends from IV to SC products driven by patient needs

Subcutaneous Drug Delivery & Development Consortium

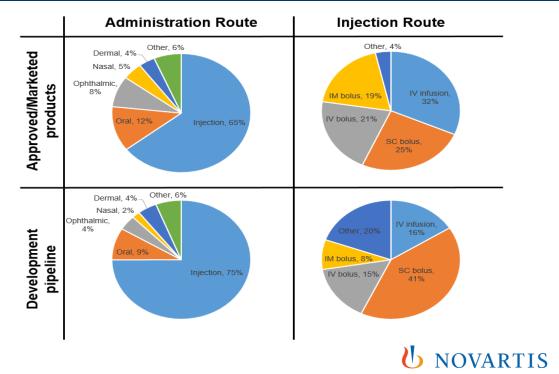
Subcutaneous Bioavailability Challenges



Summary

Patient Centered Advantages & Trends of Subcutaneous

Trend in mAB from IV to SC



- Transition is being accelerated by COVID
- New classes of bispecific show higher efficacy SC

Reimagining Medicine

Patient Centered Advantages & Trends of Subcutaneous

Trend in Peptide from IV to SC in development pipeline

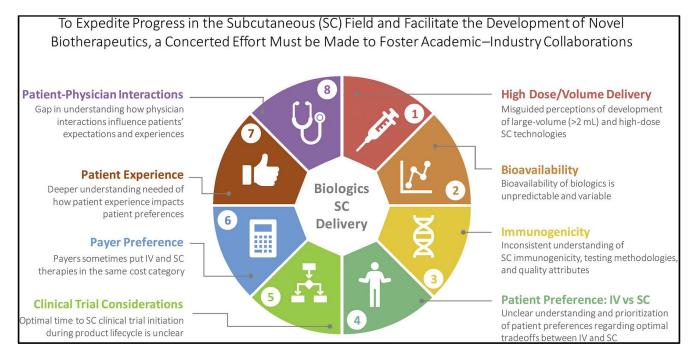
Reimagining Medicine

Ahil Ganesh, Carolyn Heusser, Sudhakar Garad & Manuel Sanchez-Felix, Patient-centric design for peptide delivery: Trends in routes of administration and advancement in drug delivery technologies, Medicine In Drug Discovery, 2021

Subcutaneous Drug Delivery & Development Consortium

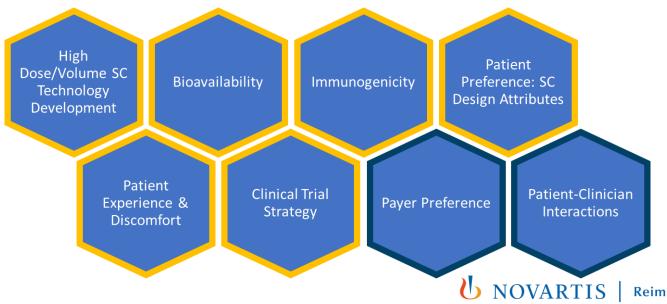
Vision

, O

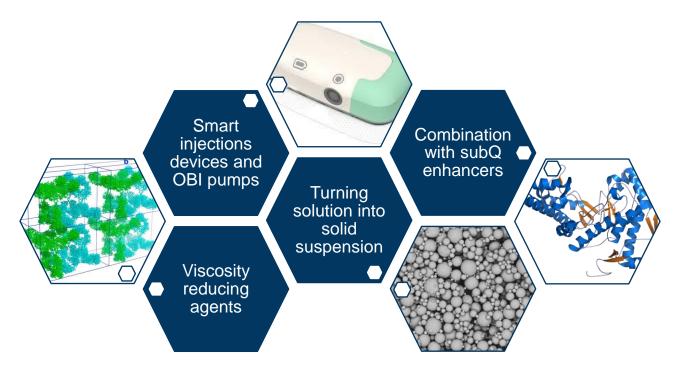

Our vision is to transform patient care and improve patient outcomes leading fundamental advancements in subcutaneous drug development and delivery

Mission

The mission of the Subcutaneous Drug Development & Delivery Consortium is to collaboratively address the most pressing subcutaneous dosage and delivery issues and opportunities in a precompetitive manner


Accelerating the development of novel technologies and tools for subcutaneous delivery of biotherapeutics subcutaneous

David S. Collins, Manuel Sanchez-Felix, Advait V. Badkar, Randall Mrsny, Journal of Controlled Release, 221, (2020), p. 475-482


Subcutaneous Drug Delivery & Development Consortium

The **top 6 problem statements** have been prioritized for 2020, with **6 sub-teams created around these statements** (the 2 patient statements have been combined into 1 subteam).

Reimagining Medicine

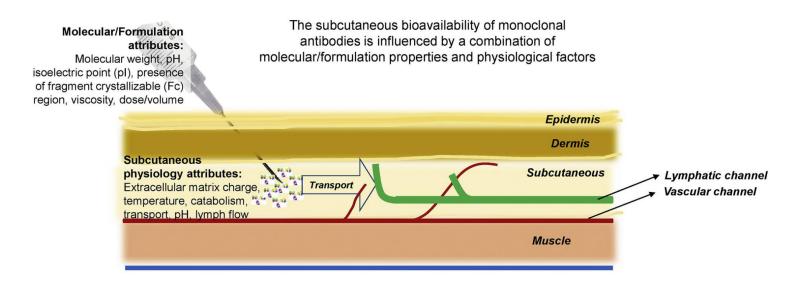
Formulation & Device Options for SubQ Delivery – especially of higher doses

David S. Collins, Manuel Sanchez-Felix, Advait V. Badkar, Randall Mrsny, Journal of Controlled Release, 221, (2020), p. 475-482

8

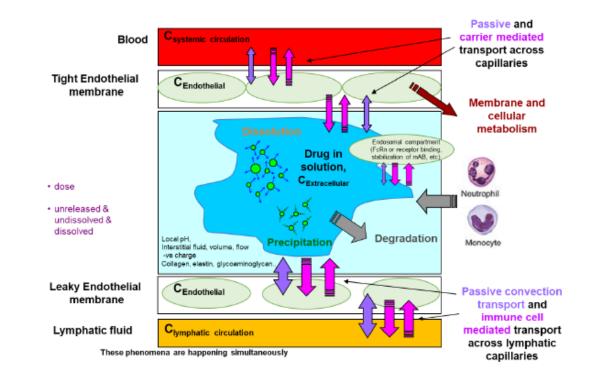
Manuel Sánchez-Félix ª 🎗 🖾, Matt Burke ^b 🖾, Hunter H. Chen ^c 🖾, Claire Patterson ^d 🖾, Sachin Mittal ^e 🖾

Contents


1.	Introduction
2.	Current landscape in evaluating the bioavailability of mAbs
	2.1. Current <i>in vitro</i> and <i>in silico</i> approaches to evaluating the bioavailability of mAbs
	2.2. Potential directions for models moving forward
3.	Opportunities
4.	Conclusion and open innovation challenge

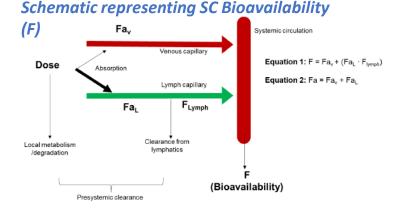
Reimagining Medicine

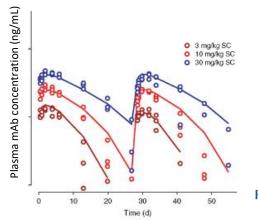
U NOVARTIS


Commercialized Product Examples

Molecule	Tradename	MW (kDa)	SC bioavailability	Molecule	Tradename	MW (kDa)	SC bioavailability
Adalimumab	Humira®	148	Human: 52–82% (64%)	Omalizumab	Xolair®	149	Human: 53–71% (62%)
			Monkey: 94–100% (96%)	_			Monkey: 64–104% (84%)
Alirocumab	Praluent®	146	Human: 85%				Mice: 90%
			Monkey: 73–77%	Bevacizumab	Avastin®	149	Monkey: 98%
			Rat: 44–97%				Rat: 69%
				_			Mice: >100%
Canakinumab	llaris®	145	Human: 63–67%	Rilonacept	Arcalyst®	251	Human: 43%
			Monkey: 60%				Monkey: 70%
				_			Rat: 60%
Certolizumab pegol	Cimzia®	91	Human: 76–88%				Mice: 78%
			Rat: 24–34%	Rituximab	Mabthera®	145	Human: 71%
Etanercept	Enbrel®	150	Human: 76%				Minipig: 71%
			Monkey: 73%				Mice: 63%
			Mice: 58%	Sarilumab	Kevzara®	150	Human: 80%
Golimumab	Simponi®	150	Human: 53%	-			Monkey: 78%
			Monkey: 77%	Trastuzumab	Herceptin®	148	Human: 82%
							Minipig: 82%
							Mice: 83%

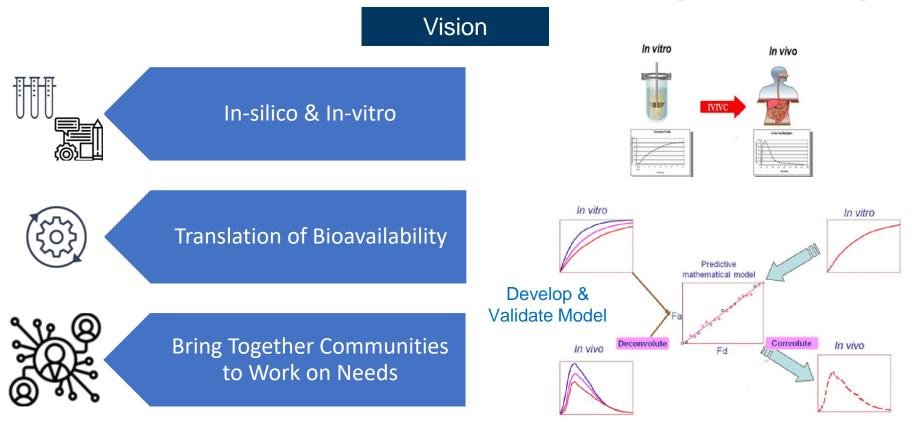
M. Sanchez-Felix, M. Burke, H.H. Chen, C. Patterson, S. Mittal, Predicting bioavailability of monoclonal antibodies after subcutaneous administration: Open innovation challenge, Adv Drug Deliv Rev, 167, (2020), p. 66-77




M. Sanchez-Felix, M. Burke, H.H. Chen, C. Patterson, S. Mittal, Predicting bioavailability of monoclonal antibodies after subcutaneous administration: Open innovation challenge, Adv Drug Deliv Rev, 167, (2020), p. 66-77

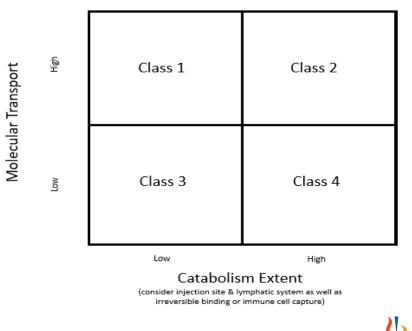
Subcutaneous Bioavailability Challenges In Silico Modelling

- In silico absorption modelling is successfully used in oral formulation development for compound selection, formulation design, specification setting and sometimes even in lieu of clinical bioequivalence studies
- Compared to oral, SC models are less well established, and are acknowledged as complex due to multiple, interrelated nonlinear pathways
- Empirical and mechanistic models have been developed
- None can predict SC mAb bioavailability bottom-up
- Aim to predict or understand factors affecting rate and extent of absorption and impact on PK profile
- Knowledge gaps/opportunities to improve the models have been proposed



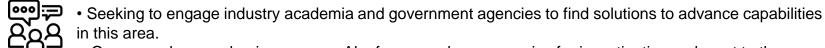
Example mAb SC PK profile

Reimagining Medicine


F, bioavailability, Fa, fraction absorbed; Fa_L, fraction absorbed via lymph; Fa_v, fraction absorbed via venous capillary; F_{Lymph}, fraction escaping lymphatic clearance.

M. Sanchez-Felix, M. Burke, H.H. Chen, C. Patterson, S. Mittal, Predicting bioavailability of monoclonal antibodies after subcutaneous administration: Open innovation challenge, Adv Drug Deliv Rev, 167, (2020), p. 66-77

Open Challenge


Classification system concept for mAbs: molecular transport vs catabolism extent

Provide three sets of data to validate hypotheses:

- Table capturing SC bioavailability data in human and corresponding preclinical species for a range of marketed mAbs.
- Excel document containing information on 26 marketed mAbs, physicochemical data, etc.
- Excel document containing PK data for the 12 therapeutic proteins described in the publication by Gill et al. (Gill et al. 2016).

Call to Action:

On a case-by-case basis, access mAbs from member companies for investigations relevant to the

objectives of this publication.

- On a case-by-case basis, provide letters of support for government research grants.
- Connecting researchers to other collaborators with complementary interests and capabilities that may be of mutual benefit.
 - Compile any research findings on the challenge set and generate a publication after 2 years to provide an update on advances.

- Transition from IV to Subcutaneous Products is driven by patient and payer needs
- "Subcutaneous Drug Delivery & Development" Consortium formed to address known risks and gaps
- Multiple high-dose and high-volume formulation options are available to help transition your product to a more convenient patient-centric product
- The consortium has published an "open" SC bioavailability vision and challenge

YXXYXXXXX \mathbf{x} **YXXYXXXXX** YYYYYYYYY LYYLYYLYL YYXYXXYYY **XXXXXXXXXX** \mathbf{x} **YXXYXXXXX** YYXYYXYYY **YXXYXXXXX** \mathbf{X} **XXXXXXXXXX TTTTTTTT XXXXXXXXXX TTTTTTTT YXXYXXXXX** YYYYYYYYY **LYYLYYLY TTTTTTTT YXXYXXXXX** \mathbf{x} **YXXYXXXXX** \mathbf{x} YYXYYXYYY LYYLYYLYL YYXYYXYYY **YXXYXXXXX** \mathbf{X} **XXXXXXXXXX** XYXXYXXXX YYYYYYYYY **XXXXXXXXXX** YYYYYYYYY

Thank you

Acknowledgements

- TRD SC Group
 - Marie Picci
 - Karolyn Bechtold-Peters
 - Jorge Nerkamp
 - Isabel Ottinger
 - Sonia Morar-Mitrica
 - Maxime Gaillot
 - Robert Hormes
 - Sabine Adler
 - Harry Tiemessen
 - Stephane Olland
 - Many other colleagues in PHAD/CPP

- Subcutaneous Consortium
 - David Collins (Lilly)
 - Renee Tannenbaum (Halozyme)
 - Donna French (AZ)
 - Shawn Davis (AZ)
 - Sachin Mittal (Merck)
 - Ron Smith (Merck)
 - Advait Badkar (Pfizer)
 - Matt Burke (Radis Health)
 - Marie-Teresa Peracchia (Sanofi)
 - Neil Mathias (BMS)
 - Rajesh Gandhi (BMS)
 - Jennie Stevenson (Amgen)
 - Randy Mrsny (Bath University)

References

- Ahil Ganesh, Carolyn Heusser, Sudhakar Garad & Manuel Sanchez-Felix, Patient-centric design for peptide delivery: Trends in routes of administration and advancement in drug delivery technologies, Medicine In Drug Discovery, 2021
- David S. Collins, Manuel Sanchez-Felix, Advait V. Badkar, Randall Mrsny, Accelerating the development of novel technologies and tools for subcutaneous delivery of biotherapeutics, Journal of Controlled Release, 221, (2020), p. 475-482
- M. Sanchez-Felix, M. Burke, H.H. Chen, C. Patterson, S. Mittal, Predicting bioavailability of monoclonal antibodies after subcutaneous administration: Open innovation challenge, Adv Drug Deliv Rev, 167, (2020), p. 66-77

