Analytical Bridging: How to Cross on the Wire Stretched Between Two Bioassay Methods?

Gaël Debauve

CASSS CMC Strategy forum Europe 2020

Virtual format

May 11-13, 2020

Before we start...

- Copy of the slides will be made available
- Feel free to contact me for any question, feedback or simply to debate: <u>gael.debauve@ucb.com</u>

uch

ELISA First!

Early phase

HOW???	Design Decision criteria Methodology (stat?)
WHAT????	What to compare? Validation data / Routine results (sample set)

Late phase

WHY!!!

Comparable results (no discontinuity between past and future data sets)

Abnormal samples detected with both methods

Differences are expected!*

Identify, characterize and evaluate the impact

How different are the 2 methods?

Parameter		Method A	Method B	
Drug		lgG1		
Assay Principle		ELISA Binding of the drug to its target	Cell-based assay Impact of target neutralization on signaling cascade	
Use		Early phase release and stability	Late phase release and stability	
Routine layout	Assay format	1 bioassay = 3 plates	1 bioassay = 4 plates	
	Replication strategy	Per plate: dose-response = 11 concentration points 2 independent standard preparation 1 sample preparation 		
Maximum variability of the reportable result based on routine layout*		8.5%	12.3%	

Head to head comparison of sample set

Stability samples	Degraded samples
n=30 (3X10 @ 50-100-200%RP)	n= 10
 DS and DP Different manufacturing processes Different storage conditions (from -70°C to 40°C) Different timepoints (from 0 to 36 month) 	Panel of various stress conditions

Statistical evaluation of stability sample data

The Deming regression

No significant difference between methods is detected + linear relationship

Outcome of the Deming regression

Pro:

Easy to implement and to draw conclusions Provides the linear relationship* between the 2 methods

Limitation:

Regression could pass through highly variable results (and conversely)

Use a second approach to better visualize the random error/systematic bias and confirm that results are comparable

Statistical evaluation of stability sample data

The Bland-Altman difference plot

• Accepted bias = $\pm 22\%$

• On average, CBA underestimates results by 3% compared to ELISA

Values visually randomly and independently distributed around the difference mean value

• No trend (variance of the difference is constant over the tested range)

No outlier detected

Results from both methods are comparable!

Outcome of the statistical evaluation on stability samples

Deming regression and Bland-Altman outputs are aligned

Results generated by both methods on stability samples can be considered as comparable!

... what about the sensitivity to pick up product degradations?

Head to Head comparison of forced degradation samples

Stress type	Condition		
Temperature 50°C/14days			
ъЦ	pH3.0/14 days		
рп	pH10.0/14 days		
Deamidation 1% Ammonium Bicarbonate pH8.1 @40°C/14c			
	1000 Klux hours		
Light	2500 Klux hours		
	5000 Klux hours		
Chroatian	0.5M Glucose @37°C/91h		
Grycation	0.5M Glucose @47°C/91h		
Ovidation	1% H ₂ O ₂ /14 days		
Oxidation	15%AAPH* @47°C/14 days		

Head to Head comparison of forced degradation samples

Stress type	Condition	%RP ELISA	%RP CBA
Temperature	50°C/14days	Similarity SST fail	81
	pH3.0/14 days	Similarity SST fail	69
рп	pH10.0/14 days	Similarity SST fail	92
Deamidation	1% Ammonium Bicarbonate pH8.1 @40°C/14days	90	101
Light	1000 Klux hours	96	88
	2500 Klux hours	100	95
	5000 Klux hours	86	79
Chroation	0.5M Glucose @37°C/91h	70	89
Glycation	0.5M Glucose @47°C/91h	100	89
Oxidation	1% H ₂ O ₂ /14 days	103	86
	15%AAPH @47°C/14 days	Similarity SST fail	Below LLOQ

No impact on bioactivity detected with any of the 2 methods

Impact on bioactivity detected with 1 of the 2 methods Impact on bioactivity detected with the 2 methods

urb

ELISA and CBA differently impacted

Stress type	Condition	%RP ELISA	%RP CBA
Temperature	50°C/14days	Similarity SST fail	81
рН	pH3.0/14 days	Similarity SST fail	69
	pH10.0/14 days	Similarity SST fail	92

Impact clearer with AAPH oxidation

Bioactivity is clearly affected in both methods but not in the same way (similarity vs drop in RP)...

What could explain that difference?

Focus on bioassay format driven differences

... and particularly on the IgG regions involved in the signal

- CBA format is closest to what happens in vivo
- More chance to have dose-response relationship impacted by degradation in ELISA as 2 "Achilles' heels" instead of 1 in CBA

BUT...

- Impact of degradations on drug kappa chain not clearly demonstrated by higher order structure analyses
- kappa chain does not explain the signal increase observed in ELISA

Widen the perspective

Can we connect bioassay data with the other forced degradation results?

Support from forced degradation study

Degradation pathway was extensively characterized using a wide variety of analytical techniques (iCE, SPR, AUC, DSC, CD, intact mass, disulfide mapping ...)

No common denominator for temperature, pH and AAPH stress conditions ...

With the exception of SE-HPLC results

very large complexes (> 5mers) observed with temperature and pH stress only

What about AAPH???

* VLHWMS = Very Large High Molecular Weight Species

** 1000 Klux.h = 6% 2-4 mers (VLHMWS not detected) , 2500 Klux.h= 11% 2-4 mers (VLHMWS not detected), data not shown

SEC-HPLC 15% AAPH

Very large complexes more abundant than in the other stress condition

Holistic view of bioassay data

Stress type	Condition	%RP ELISA	%RP CBA	Very large HMWS
Temperature	50°C/14days	Similarity SST fail	81	Yes (> 3%)
pH -	pH3.0/14 days	Similarity SST fail	69	Yes (> 3%)
	pH10.0/14 days	Similarity SST fail	92	Yes (> 3%)
Deamidation	1% Ammonium Bicarbonate pH8.1 @40°C/14days	90	101	No (<3%)
Light -	1000 Klux hours	96	88	No (<3%)
	2500 Klux hours	100	95	No (<3%)
	5000 Klux hours	86	79	No (<3%)
Glycation	0.5M Glucose @37°C/91h	70	89	No (<3%)
	0.5M Glucose @47°C/91h	100	89	No (<3%)
Oxidation	1% H ₂ O ₂ /14 days	103	86	No (<3%)
	15%AAPH @47°C/14 days	Similarity SST fail	Below LLOQ	Yes +++

What is the link between very large complexes and impact on bioactivity?

Can very large complexes explain ELISA/CBA differences?

"Branching effect" mediated by secondary Ab leading to **signal amplification**

Competition between IgG/IgG and IgG/ligand interaction → more free ligand leading to **delay in signal inhibition**

Link between very large complexes and assay format supports the increase in max signal observed in ELISA and the decrease in RP observed in CBA!

Can very large complexes explain ELISA/CBA differences?

... confirmatory experiment on purified very large HMWS fraction from 15% AAPH degraded sample

Curve shift even more pronounced with purified very large HWMS fraction → Strengthen the link between very large HMWS and impact on bioactivity

Bridging general conclusion

- Results generated by both methods on stability samples can be considered as comparable
- Whilst forced degradation results are not identical, differences have been evaluated and characterized
- Very large complexes could potentially impact the biological activity
- ELISA looks more sensitive... but seems related to the way very large complexes impacts the doseresponse relationship in the ELISA format (similarity)
- Risk of very large complexes impacting bioactivity is mitigated by SE-HPLC (more sensitive and part of the release/stability package (
 detectability))
- Cell-based assay is more representative of the drug mechanism of action

Take home message

Think about the objective(s), raise the good question(s), apply the right statistical tool(s)

StatisK Ycians

MACHIAVEL CUVRS UNISAGON OUTOGRA-URING DISAGON OUTOGRA-URING DISAGON OUTOGRA-URING DISAGON OUTOGRA DISAGON OUT

Put an appropriate level of energy in identifying the design of assay bridging and identifying the potential pitfalls

Keep your "stability samples" close but your "forced degradation samples" closer

- \checkmark Time consuming
- \checkmark Holistic view put bioassay in perspective with other analytical data
- ✓ Differences are not necessarily unacceptable, as far as they are characterized and impact is evaluated

The Bioassay Dev "A-Team"

Svennberg

Bastien

Cornet

Bortolotto

Annemie Wielant

Géraldine Pivato

Morgane

Gesquière

Kummert

Eglantine

Girot

Patricia Van Christophe Brackel Marchi

The Non Clinical **Biostatistician Charlie's Angels**

Hanitsoa

Bianca Rakotosalama Teodorescu

Dimitris Gayraud

The Characterization

Crew

John O'Hara

Andreia Marques Katharina Lang

The Phys/Chem Squad

Annick Gervais

Sandrine Van Leugenhaeghe

Questions?

Thanks!

