

Relationships with Verve Therapeutics,

Typical case of neonatal-onset urea cycle disorder

A 1-day-old male infant was noted to have poor feeding and increased sleepiness in the well-baby nursery. He was transferred to the neonatal intensive care unit.

The blood ammonia level was significantly elevated >1000 μ mol/L (normal for age is <33 μ mol/L).

Over the next 12 hours, he was transferred to a tertiary care pediatric hospital 3 hours away for emergent management, including 48 hours of dialysis.

His newborn screening and initial metabolic labs were consistent with a diagnosis of citrullinemia type 1. He was initiated on ammonia-scavenging medications and medical formula.

months

He was discharged from the hospital by day of life 20.

Unfortunately, he was readmitted at 1 month of life with poor feeding, diarrhea, and an elevated ammonia level of 250 µmol/L.

Over the first 12 months of life, he was readmitted to the hospital 6 more times for recurrent episodes of hyperammonemia.

He was also noted to have difficulty feeding, requiring gastrostomy tube placement at 6 months of age.

The family decided to pursue liver transplantation, and he was listed for transplant at 10 months of age after he had grown to an appropriate size. He received a deceased donor transplant when he was 13 months of age.

His post-transplantation period was complicated by a bile leak and episodes of acute rejection requiring increased doses of immunosuppression.

He had no further hyperammonemic crises after transplantation, but he required 4 additional hospitalizations for transplant-related complications.

months

9

12

13

5

4

He is currently 6 years old and continues to require post-transplantation immunosuppression.

He suffers from global developmental delay.

He requires help with dressing and toileting, but he can speak in 2-word phrases and enjoys attending his special needs kindergarten.

The aggregate health care costs for this individual have totaled > US\$ 2 million.

Typical case of neonatal-onset urea cycle disorder

months

What if we could have intervened with a personalized liver-directed corrective gene-editing therapy <u>early</u> in this patient's life?

2

4

Newborn patients with grievous inborn errors of metabolism

Protecting against the world's leading killer

Editing via lipid nanoparticles (LNPs), base editor mRNA, and guide RNA

LNP base editing of *PCSK9* in the liver in monkeys – LDL cholesterol levels

Musunuru et al. *Nature* 2021;

LNP base editing of PCSK9 in heart disease patients – LDL cholesterol

https://www.vervetx.com/sites/default/files/2025-04/VERV%20Heart-2%20Data%20Call%20Deck_041425_PP%2

Correcting pathogenic variants to definitively treat rare genetic disorders

Anthony Parrazzo (center) counts out 11 pills of Kuvan, which he takes every day to help manage his PKU. Lauren Ward (left) and Samantha Parrazzo (right) take a powdered form of the drug. phenylketonuria (PKU)

high phenylalanine levels

neurological problems, avoided only with strict diet & daily pills/shots

Base editing for correction of PKU variants in PAH gene in the liver

- c.1222C>T (R408W) 22.4% allele frequency (AF)
- c.1066–11G>A (splice site) 6.5% AF
- c.782G>A (R2610) 5.5% AF
- c.728G>A (R2430) 3.7% AF
- c.1315+1G>A (splice site) 3.6% AF
- c.842C>T (P281L) 3.2% AF

Base editing for correction of PKU variants in PAH gene in the liver

- c.1222C>T (R408W) 22.4% allele frequency (AF)
- c.1066–11G>A (splice site) 6.5% A
- c.782G>A (R2610) 5.5% AF
- c.728G>A (R243Q) 3.7% AF
- c.1315+1G>A (splice site) 3.6% AF
- c.842C>T (P281L) 3.2% AF •

Mohamad-Gabriel Alameh CHOP

William Peranteau CHOP

UPenn

Dominique Madelynn Brooks Whittaker UPenn UPenn

Aidan Sarah Quialev Grandinette UPenn UPenn

Base editing for correction of PKU variants in PAH gene in the liver

- c.1222C>T (R408W) 22.4% allele frequency (AF)
- c.1066–11G>A (splice site) 6.5% A
- c.782G>A (R2610) 5.5% AF
- c.728G>A (R243Q) 3.7% AF
- c.1315+1G>A (splice site) 3.6% AF
- c.842C>T (P281L) 3.2% AF •

Mohamad-Gabriel Alameh CHOP

William Peranteau CHOP

UPenn

Dominique Madelynn Brooks Whittaker UPenn UPenn

Aidan Sarah Quialev Grandinette UPenn UPenn

Base editing to correct P281L & R408W variants in HuH-7 cells

variant #6 = P281L editor = ABE8.8

various adenine base editor/guide RNA combinations

Base editing to correct P281L & R408W variants in HuH-7 cells

variant #1 = R408Weditor = SpRY-ABE8.8

PAH R408W homozygous HuH-7 cells - transfections for correction of R408W variant

various adenine base editor/guide RNA combinations

Mouse model with "humanized" *PAH* allele(s)

LNP base editing treatment of "humanized" PKU mice (P281L or

LNP base editing treatment of "humanized" PKU mice (P281L or

#6)

#1)

Most frequent classic PKU variants in PAH gene

c.1222C>T (R408W) 22.1% c.331C>T (R111X) 1.0% c.1066–11G>A (splice site) 6.4% c.441+5G>T (splice site) 1.0% c.782G>A (R2610) 5.5% c.168+5G>C (splice site) 0.9% c.728G>A (R243Q) 3.6% c.1238G>C (R413P) 0.9% c.1315+1G>A (splice site) 3.5% c.1045T>C (S349P) 0.8% c.842C>T (P281L) 3.1% c.1042C>G (L348V) 0.7% c.473G>A (R158Q) 2.5% c.1068C>A (Y356X) 0.7% c.194T>C (I65T) 1.8% c.165delT 0.7% c.754C>T (R252W) 1.5% c.442–1G>A (splice site) 0.6% c.611A>G (T204C) 1.4% c.814G>T (G272X)

 $\mathbf{O} = \mathbf{O}$

Rapid, standardized screening for corrective editing in cells

HuH-7 cells edited for insertion of variant

HuH-7 cells edited for insertion of variant #3

HuH-7 cells edited for insertion of variant

HuH-7 cells edited for insertion of variant #4

Rapid, standardized screening for corrective editing in cells

Rapid, standardized screening for corrective editing in cells

Base editing to correct another *PAH* variant in HuH-7 cells

variant #2 = c.1066–11G>A

Base editing to correct another *PAH* variant in HuH-7 cells

variant #2 = c.1066–11G>Aeditor = SpRY-ABE8.8

Screening with SpRY-ABE8.8 mRNA + guide RNAs in HuH-7 cells

Ientivirus-transduced HuH-7 cells - mRNA/gRNA transfections for correction of PAH variants

Most frequent classic PKU variants in PAH gene

c.1222C>T (R408W) 22.1% c.331C>T (R111X) 1.0% c.1066–11G>A (splice site) c.441+5G>T (splice site) 6.4% 1.0% c.782G>A (R261Q) 5.5% c.168+5G>C (splice site) 0.9% c.728G>A (R243Q) 3.6% c.1238G>C (R413P) 0.9% c.1315+1G>A (splice site) 3.5% c.1045T>C (S349P) 0.8% c.842C>T (P281L) 3.1% c.1042C>G (L348V) 0.7% c.473G>A (R158Q) 2.5% c.1068C>A (Y356X) 0.7% c.194T>C (I65T) 1.8% c.165delT 0.7% c.754C>T (R252W) 1.5% c.442–1G>A (splice site) 0.6% c.611A>G (T204C) 1.4% c.814G>T (G272X)

Umbrella clinical trial for PKU

Pathogenic variants in PKU patients

• What about the other 1,000+ cataloged variants?

Pathogenic variants in PKU patients

Hillert et al. *Am J Hum Genet* 2020; 107:234-50

Pathogenic genes and variants

- What about <u>uncataloged</u> variants in low- and middle-income countries without capacity for genetic testing?
- Enormous potential for inequity drug development biased to certain genes and certain frequent variants in high-income countries?
- Mutational discrimination

How to mitigate mutational discrimination?

Make personalized gene editing therapies for all comers, no matter how rare the disease and how rare the variant (even *N*-of-1)

Newborn patients with grievous inborn errors of metabolism

Variants causing urea cycle disorders and organic acidemias

- citrullinemia type 1 = ASS1 variants
- argininosuccinic aciduria = *ASL* variants
- CPS1 deficiency = CPS1 variants
- OTC deficiency = *OTC* variants
- propionic acidemia = *PCCA* or *PCCB* variants
- methylmalonic acidemia = *MMUT* or *MMAB* variants

Rapid, standardized corrective editing in cells

Rapid generation of mice for testing in vivo corrective editing

Variants causing urea cycle disorders and organic acidemias

- citrullinemia type 1 = ASS1 variants
- argininosuccinic aciduria = *ASL* variants
- CPS1 deficiency = CPS1 variants
- OTC deficiency = OTC variants
- propionic acidemia = *PCCA* or *PCCB* variants
- methylmalonic acidemia = *MMUT* or *MMAB* variants
- newborn case

A 2-day-old male infant, named KJ, became lethargic and had respiratory distress.

The blood ammonia level was significantly elevated >1000 μ mol/L (normal for age is <33 μ mol/L).

He was transferred to the neonatal intensive care unit and rapidly started on life-saving dialysis.

Genetic diagnosis

Genetic diagnosis

Screening of base editors for correction of *CPS1* Q335X variant

Screening of base editors for correction of *CPS1* Q335X variant

various adenine base editor/guide RNA combinations

Results in less than 4 weeks

Screening of base editors for correction of CPS1 Q335X variant

Completed in 6 weeks

Assembly of a team of academic and industry partners

Generation of patient-specific Q335X mice for *in vivo* testing

Genetic diagnosis	Patient-s cell line	specific developed Screening to identify efficient ar base-editir	performed the most ad precise ag approach Patient-specific mouse model generated			
Manth	1 14					

Rosa26 multi-variant mice (and endogenous *Cps1*-Q335X mice)

Obtained two founder Rosa26 *multi-variant mice* (and one founder Cps1-0335X mouse) in 2 months

Initial off-target assessment

Genetic diagnosis	Patient-specific cell line developed Screenin to ident efficient base-ed	d ng performed ify the most and precise iting approach Patient-specific mouse model generated Initial nor with grade	off-target nination analyses erformed research- reagents		Petros Giannikopoulos IGI/UCSF	Fyodor Urnov IGI/UC Berkeley
		1	1			

Pre-IND meeting with U.S. Food and Drug Administration (FDA)

Gen diag	netic F gnosis	Patient-specific cell line developed Screening to identify efficient an base-editin	performed the most ad precise ag approach Patient-specific mouse model generated Initial c nom pe with r grade	off-target nination analyses erformed esearch- reagents	Meeting with FDA before submission of IND application			
ntri M	Month 1	Month 2	Month 3	Month 4	Month 5	Month 6	Month 7	Month 9

Toxicology batch of kayjayguran abengcemeran (k-abe)

Genetic diagnosis	Patient-specific cell line developed Screening to identify efficient a base-editi	performed the most nd precise ng approach Patient-specific mouse model generated Initial of nomi a per with re grade re	f-target ination nalyses formed search- eagents	Meeting with FDA before submission of IND application Toxicology batch of k-abe completed				
Month	1 Month 2	Month 3	Month 4	Month 5	Month 6	Month 7	Month 8	

Nonhuman primate toxicology study

	Gene	etic nosis	Patient-specific cell line developed Screening p to identify t efficient an base-editin	performed the most d precise g approach Patient-specific mouse model generated Initial c non pe with r grade	off-target nination analyses erformed research- reagents	Nonhuman primate toxicology study completed Meeting with FDA before submission of IND application Toxicology batch of k-abe completed		No observa adverse ev mg/kg Transient A ALT elevat Lipid excip reduced by 14 days, so repeat dos	able /ents at 1. AST and ions ients / >99.5% upporting ing	5 by
Birth	th						1			

Testing of toxicology batch of k-abe in *Rosa26* multi-variant mice

Ger diaş	netic gnosis	Patient-specific cell line developed Screening to identify efficient ar base-editin	performed the most nd precise ng approach Patient-specific mouse model generated Initial o nom a pe with re grade r	off-target nination analyses rformed esearch- reagents	Testing of t batch Nonhuman primate toxicology study completed Meeting with FDA before submission of IND application Toxicology batch of k-abe completed	oxicology in mouse model		
sirth	Month 1	Month 2	Month 3	Month 4	Month 5	Month 6	Month 7	Month 8

Correction of *CPS1* Q335X variant in *Rosa26* multi-variant mice

Manufacturing of clinical batch of k-abe and testing in cells

Genetic diagnosis	Patient-specific cell line developed Screening to identify efficient at base-editin	performed the most nd precise ng approach Patient-specific mouse model generated Initial o nom a pe with re grade r	ff-target ination analyses rformed esearch- eagents	Testing of t batch Nonhuman primate toxicology study completed Meeting with FDA before submission of IND application Toxicology batch of k-abe completed	toxicology in mouse model	Clinical k-abe co Testir clinica in cel	batch of mpleted ng of al batch ls		
1 Month 1	Month 2	Month 3	Month 4	Month 5	Month 6	Mo	onth 7	Month 8	

Manufacturing of clinical batch of k-abe and testing in cells

Q335X lentivirus-transduced HuH-7 cells treated with k-abe

- corrective editing +/- bystander editing
- bystander editing alone

Off-target analyses with clinical batch of k-abe

Genetic diagnosis	Patient-specific cell line developed Screening to identify efficient a base-editi	g performed y the most and precise ang approach Patient-specific mouse model generated Initial of non per with r grade	off-target nination analyses erformed research- reagents	Testing of t batch Nonhuman primate toxicology study completed Meeting with FDA before submission of IND application Toxicology batch of k-abe completed	oxicology in mouse model	k-ab cl ir	e completed esting of inical batch cells Off-target editing analy with clinical batch	- /ses
 Month 1	Month 2	Month 3	Month 4	Month 5	Month 6		Month 7	Month 8

Closest gene to nominated off-target site

Closest gene to nominated off-target site

Completed in 6 months

Single patient expanded access IND application to FDA

Initial treatment with k-abe (day 208 after birth)

Single-patient dose escalation plan as part of clinical care

- Initial low dose (0.1 mg/kg) to ensure safety
- Maximum of 3 doses
- At least 21 days between doses
- All doses must be given by 120 days
- As he is presumed CRIM-negative (no full-length protein), given steroid-sparing immunosuppression regimen with sirolimus and tacrolimus
- Decisions to re-dose made by clinical oversight committee with members from:
 - o Metabolism
 - o Liver transplant
 - Immunology
 - Hematology
 - Gene therapy team
 - Medical ethics

Single-patient dose escalation plan as part of clinical care

- Initial low dose (0.1 mg/kg) to ensure safety
- Maximum of 3 doses
- At least 21 days between doses
- All doses must be given by 120 days
- As he is presumed CRIM-negative (no full-length protein), given steroid-sparing immunosuppression regimen with sirolimus and tacrolimus
- Decisions to re-dose made by clinical oversight committee with members from:
 - o Metabolism
 - o Liver transplant
 - Immunology
 - Hematology
 - Gene therapy team
 - Medical ethics

Actual dosing schedule

Treatment with k-abe resulted in no serious adverse events

- Brief coughing episode at beginning of dose 2 and of dose 3; after initial episode, no further cough and able to tolerate full rate of infusion
- Low-grade fever and transient rash after dose 3
- Mild, transient, asymptomatic, dose-dependent increases in ALT with no other liver function abnormalities

Higher protein tolerance, weaning of nitrogen scavenger medication

Higher protein tolerance, weaning of nitrogen scavenger medication

Musunuru, Grandinette ... Ahrens-Nicklas. *N Engl J Med* 2025; online first

Longer follow-up is need to understand efficacy and safety

Liver biopsy to assess *CPS1* Q335X editing was not completed due to the risk of the procedure

Conclusions, challenges, and opportunities

- KJ will likely continue to need some urea cycle management, but early signs suggest that his disease may be less severe
- It is possible to develop a personalized gene-editing therapy in 6 months
- Repeated doses of an LNP base-editing therapy can be safely given to an infant
- Longer follow-up and studies of additional non-invasive markers are needed to quantify potential benefit and durability
- Ultimately, we need to move from *N*-of-1 studies to platform trials

Conclusions, challenges, and opportunities

- KJ will likely continue to need some urea cycle management, but early signs suggest that his disease may be less severe
- It is possible to develop a personalized gene-editing therapy in 6 months
- Repeated doses of an LNP base-editing therapy can be safely given to an infant
- Longer follow-up and studies of additional non-invasive markers are needed to quantify potential benefit and durability
- Ultimately, we need to move from *N*-of-1 studies to platform trials

Umbrella clinical trial for PKU

Rebecca Ahrens-Nicklas Children's Hospital of Philadelphia (CHOP)

Screening with SpRY-ABE8.8 mRNA + guide RNAs in HuH-7 cells

lentivirus-transduced HuH-7 cells - mRNA/gRNA transfections for correction of gene variants

Screening with SpRY-ABE8.8 mRNA + guide RNAs in HuH-7 cells

lentivirus-transduced HuH-7 cells - mRNA/gRNA transfections for correction of gene variants

KJ and his parents

University of Pennsylvania

Xiao Wang Sarah Grandinette Dominique Brooks Madelynn Whittaker Aidan Quigley Anne Marie Berry Julia Hacker Lauren Testa Elena Kahn Ananya Talikoti Emily Feierman Delaney Rutherford Ping Qu Nataliya Petrenko

Innovative Genomics Institute

Fyodor Urnov Petros Giannikopoulos Taylor Hudson Kevin Briseno

Children's Hospital of Philadelphia Rebecca Ahrens-Nicklas Nancy Robinson-Garvin Juliana Small Sarah McCague Samantha Burke Christina Wright Sarah Bick Lindsey George Kim Ng Mohamad-Gabriel Alameh

William Peranteau CHOP Section of Metabolism

Broad Institute/Harvard David Liu Alvin Hsu

Mass General Brigham Benjamin Kleinstiver Rachel Silverstein Logan Hille

Aysel Ogul FDA Center for Biologics Evaluation and Research

Acuitas Therapeutics

Ying Tam Christopher Barbosa Sean Semple Kamila Wlodarczyk Nicholas Tougas Robert Leone Jon Le Huray

Aldevron

Venkata Indurthi Shweta Sharma Michael Jepperson Mark Wetzel Lane Womack Tao Lu Matt Sliva A.J. Muehlberg Megan Wohl Jenna Sjoerdsma **Bezhin Mesho** Jacob Scherb Helen Velishek Jon Cooper

Danaher Corporation Sadik Kassim

Integrated DNA Technologies

Christopher Vakulskas Michael Collingwood Katie Keogh Ashley Jacobi Morgan Sturgeon Christian Brommel Ellen Schmaljohn Gavin Kurgan Thomas Osborne He Zhang Kyle Kinney Garrett Rettig

The Jackson Laboratory Cathleen Lutz

NIH Somatic Cell Genome Editing program P.J. Brooks Tim LaVaute Chris Boshoff