

Regulatory Perspectives on Gene Therapies Incorporating Human Somatic Genome Editing

Zhaohui Ye, Ph.D.

Division of Gene Therapy 2 Office of Gene Therapy Office of Therapeutic Products Center for Biologics Evaluation and Research Food and Drug Administration

CASSS Cell and Gene Therapy Products 2023 Symposium June 29, 2023

Gene Therapy & Genome Editing

Gene therapy products mediate their effects by transcription or translation of transferred genetic material, or by specifically altering host genetic sequences.

Human genome editing is a process by which DNA sequences are added, deleted, altered or replaced at specified location(s) in the genome of human somatic cells, ex vivo or in vivo, using nuclease-dependent or nucleaseindependent GE technologies.

Mazhar Adli, Nature Communications, 2018

Genome Editing (GE) Products

- GE products include:
 - Directly administered, in vivo genome editing products
 - Ex vivo genome edited cell products

Human diseases

van Haasteren, J., et al., Nature Biotechnolgy, 2020

Regulation of GE Products

CBER received the first submissions for genome editing products in 2008

- 71 INDs
- 89 Pre-INDs
- 41 Pre-pre-INDs/INTERACTs

INDs

- 10% in vivo genome editing products
- 90% ex vivo genome edited cell products

Regulation of GE Products

Science-based approach

 Characterization of the product mechanism of action and safety attributes, using current knowledge and tools in the field

Benefit-risk analyses

- Potential to correct genetic causes of disease
- Risk of unintended genome modification
- Unknown long-term effects of on- or off-target genome editing

Anzelone, Koblan, and Liu; Nature Biotechnolgy, 2020

Cas9 nickase

peaRNA

6

Considerations for Developing GE Products

- Type & degree of modification needed
- Mechanism of DNA sequence change
- Product design and delivery method
 - In vivo versus ex vivo

www.fda.gov

- Viral vectors, nanoparticles, plasmid DNA, mRNA, protein (RNP)
- Optimization of genome editing component expression
- On- and off-target verification studies
 - What assays and models are available/appropriate?
 - What will you monitor sequence, expression, function?
- Clinical trial design, patient monitoring, long-term follow-up

Ensuring GE Product Quality

ality

- Suitable qualification of starting materials & components
- A well-defined process and process controls
- Appropriate product testing & characterization

GE Components

Genome editing components (e.g., nuclease, targeting elements, donor template) are considered:

- Drug substances when they are formulated into nanoparticles to produce the drug product that is directly administered to perform genome editing in vivo
- Critical components when they are used to perform genome editing in cells ex vivo and the autologous/allogeneic cells are the drug product

Li, H., et al.; Signal Transduction and Targeted Therapy, 2020

GE Component CMC Considerations

- Detailed descriptions of how the components are designed, manufactured, and tested should be included in an IND
- GE components that are used in routine product manufacture should be manufactured according to CGMPs
 - Phase 1: FDA Guidance for Industry: CGMP for Phase 1 Investigational Drugs
 - Full CGMPs are expected for BLA supporting trials and licensure
- GE components should be tested for safety, identity, purity, activity, and residuals based on their manufacturing process
 - Set acceptance criteria based on manufacturing experience and what has been shown to be safe and effective in preclinical/clinical studies
- Stability of GE components should be assessed

GE Drug Product Testing

- Test final product for safety, identity, purity, potency, and residuals based on the manufacturing process
 - Set acceptance criteria based on manufacturing experience and what has been shown to be safe and effective in preclinical/clinical studies
- For ex vivo modified cell products:
 - Characterize the presence of residual genome editing components
 - The need to test each batch for off-target modifications, translocations, etc. will be considered on a case-by-case basis
 - Allogenic cell products may need additional characterization to ensure safety
- If drug product manufacture involves expansion/differentiation of a cell bank, it may be appropriate to perform certain testing on the cell bank
 www.fda.gov

10

Human Genome Editing Safety Concerns

- Off-target genome editing
 - Type and sensitivity of off-target screening methods
 - In vivo: off-target cells/tissues
- Unintended biological consequences of on-target editing
 - Mutagenesis as a result of imprecise DNA repair following on-target editing
- Additional adverse effects due to genomic DNA cleavage at on- and offtarget sites
 - Chromosomal translocations, inversions, etc.
- Immunogenicity
 - To GE components, editing outcome, or the delivery system

Challenges to Addressing Human Genome Editing Safety Concerns

- Selection of appropriate methods for predicting and identifying unintended genomic modifications
- Accounting for genomic variation between individual human subjects
- Determining the biological impact of identified unintended genomic modifications
- Possible limitations of animal models for evaluation of safety (and activity)
- Patient monitoring for genome editing-related adverse events

Assessing the Safety of Human GE Products

- How is on-target editing activity being evaluated?
 - Sequence change, change in protein production, biological change
 - Are methods capable of identifying large and small indels?
- What are the kinetics of editing activity?

- Has there been thorough evaluation of potential off-target editing sites?
 - Types & frequency
 - Downstream biological consequences

Assessing the Safety of Human GE Products

- What models were used to assess safety and activity?
 - Have in vitro and in vivo studies been performed?
 - Are genome editing components active in the models?
 - Are models informative of effects of on- and off-target editing?
 - Has safety of delivery method been assessed?
 - In the case of *in vivo* genome editing, have off-target cells/tissues been identified and characterized?
 - Has data been generated to inform monitoring and followup of potential study subjects?

www.fda.gov

Clinical Monitoring Considerations

- Clinical safety monitoring should be guided by:
 - Findings from preclinical studies

www.fda.gov

- Features of the underlying disease
- Anticipated patient-product interactions
- Safety reporting requirements (21 CFR 312)
 - Systematic monitoring of patients at defined time intervals
- Long term follow-up studies: 15-year follow-up

Early Communication with CBER/OTP

INTERACT meetings

- INTERACT INitial Targeted Engagement for Regulatory Advice on CBER producTs
- Non-binding, formal scientific discussions usually between CBER/OTP nonclinical review disciplines (P/T & CMC) and the sponsor
- Initial targeted discussion of specific issues after obtaining preliminary data from pilot studies but prior to conducting extensive animal studies
- Additional information can be found at: <u>OTAT INTERACT Meeting | FDA</u>

Pre-IND meetings

- Non-binding, formal meeting between FDA and sponsor (with formal minutes generated)
- Meeting package should include summary data and sound scientific principles to support use of a specific product in a specific patient population
- Guidance for Industry: Formal Meetings Between the FDA and Sponsors or Applicants of PDUFA Products (December 2017) <u>https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/U</u> <u>CM590547.pdf</u>

Summary

Gene therapies utilizing genome editing are regulated using a science-based approach, while considering the benefits and risks of each product

- Genome editing components are most often considered drug substances or critical components of these products
 - Detailed descriptions of how the components were designed, manufactured, and tested need to be provided
- Comprehensive product characterization is key to product development and understanding product risk
 - On-target editing efficiency
 - Off-target editing outcomes
 - Delivery method
- Preclinical evaluation should be adapted to the specific product and level of perceived risk
 - Appropriate and informative models
 - Multiple orthogonal methods

CBER Contact Information

FDA

Zhaohui Ye, Ph.D.
Division of Gene Therapy 2
OGT/OTP/CBER/FDA
WO Bldg. 52 Room 3104
10903 New Hampshire Ave.
Silver Spring, MD 20993
Tel: 240-402-7471
Zhaohui.Ye@fda.hhs.gov

- Regulatory Questions: OTP Main Line – 240 402 8190
 Email: <u>OTATRPMS@fda.hhs.gov</u>
- References for the CBER/OTP regulatory process and interactions with CBER/OTP

http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/OtherRecommendationsforManufacturers/ucm0943 38.htm

https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/interactions-office-tissues-and-advanced-therapies

OTP Learn Webinar Series: http://www.fda.gov/BiologicsBloodVaccines/NewsEvents/ucm232821.htm