What device engineers can tell you about Cell & Gene Therapy delivery devices and regulatory challenges

Saran Baskaran, Device Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, US

Samir A. Shah, PhD, CMC Regulatory Affairs, Devices & Digital Therapeutics, Oncology R&D, AstraZeneca, Gaithersburg, US

27 June 2023
Agenda

1. Identifying a need for a device for cell & gene therapeutic (CGTP) delivery
2. Unique aspects of device development for cell & gene therapies
 1. Human Factors Considerations
 2. Drug-Device Compatibility
 3. Risk Management
3. Regulatory challenges with CGTP delivery devices
Cell and gene therapies are increasingly looking at medical devices for therapeutic delivery

- Developers for a candidate cell or gene therapy (CGTP) will seek a method of delivery that optimizes therapeutic effect.
- Today, most therapies achieve therapeutic effect through **systemic delivery** (e.g., intravenous infusion).
- Therapies that require **local delivery** (e.g. direct to organ) tend to need a medical device.
CGTP can be grouped into two delivery categories

Systemic

- Intravenous & Intra-arterial

Local

- Topical
- Intramuscular
- Intranasal
- Intrathecal
- Intravitreal

Needle & syringe may be all that are needed to create access

Direct-to-organ

Image: Insung Yoon, 2 Image: Center for Regenerative Medicine, University of Modena and Reggio Emilia, 3 Image: National Cancer Institute
Existing device development framework can be leveraged to focus team effort and optimize therapeutic delivery

- Plan
- Establish Design Inputs
- Create Design Outputs
- Verify
- Validate

Device Need Identified

Organizational Stakeholders must be able to recognize that a Device needs to be developed

Recognize that changing an intended use often entails new or modified design inputs

Manage Risk

Ensuring cell or gene therapy compatibility with the device may be an iterative process

Identification of a specific design vs a range of candidate designs

Image: Drew Hays, University of Northern Iowa
Three considerations for developing CGTP devices

1. Proper Identification of User Needs and associated Human Factors Work
2. Designing a cell/gene-therapy compatible delivery vehicle and device
3. Consider the full risk picture: surgical intervention and cell/gene therapy
The development team should employ human factors tools early with users to identify **user needs** and **patient safety risks**

Pre-Formative Brainstorming
- E.g. Contextual Inquiry, Cognitive Walkthrough, Prototype Testing

Usability Test (if needed)
- E.g. Simulators, cadavers, animals

Establish Procedure & Design
- Select devices, mitigative tools if needed

Repeat procedure, design, and test loop as needed

Consider taking quantitative measurements if relevant

List of User Needs

List of Patient Risks

Developers
- HF Engineer
- Clinical Scientist
- Patient Safety

Users
- KOL HCPs
- Assistive Users
- Environment

Development Team
Three takeaways for human factors

- Work early + directly with clinical experts
- Use brainstorming exercises to identify use-related showstoppers
- Take time to think about how best to simulate the workflow

- Important for novel delivery methods
- Identify user familiarity with device & scenario
- Iterate fast with a smaller group
- Rule out disfavored designs early
- More realism comes at greater cost
- Use product risk profile to help decide
CGTP products have several specific design considerations

Design parameters commonly considered for **protein** therapeutics

- Viscosity
- Volume
- Material Interactions
- Environmental Interactions
- Injection Site Targeting

Parameters of Interest

Design parameters that may differ for **gene/cell** therapies

- Non-homogenous fluid properties
- Time-dependent fluid properties
- Multi-site injection volumes
- Impact of varying dead volumes
- New material contact interfaces
- Variable duration of material contact
- Surface adsorption characteristics
- Dose prep/admin environment
- Dwell time at each step
- Injection site location & navigation
- Maintain injection site
Key takeaways for drug/device compatibility

- Identify methods for functionality, viability and potency early
- Interfaces with users and other devices: new orientations & forces
- Product loss varies with contact surfaces and dead volume
- Deeper collaboration with device designer/manufacturer

- Success of design parameters will be gauged on the impact the device has on the drug quality attributes
- Navigation/stabilization may require the use of other devices
- Product cost may disfavor high loss designs
- Regulatory submissions may require information known only to the device designer or manufacturer
Deploy risk assessment tools early

- Direct to organ delivery may require new or existing **surgical procedures**: more clinical collaboration will be required to assess risk
- Using an **approved device** for a **new intended use** may also have risk gaps, requiring clinical and technical evaluation
- An early hazard analysis exercise will provide an overview of risks

Risk Considerations

- **Preliminary Hazard Analysis** (Use Annex A)
- Fault Tree Analysis
- Failure Modes and Effects Analysis
The delivery target & delivery method affect level of risk

- Systemic IV & IA
- Direct tissue access with needle and syringe
- Incision or vascular access required

Cell/Gene Therapy Risk

Device & Surgical Risk
Identify risk controls and keep the big picture in mind

- Use workshops with clinical experts to find the best risk controls based on state of the art and current technology
- Some procedures will simply have more residual risk and require more training

- Cell & gene therapies have the potential to achieve patient benefits not previously possible with traditional treatments
Regulatory Challenges with CGTP Delivery Devices

Samir A. Shah, PhD
Kathy Wang
Cell and gene therapy clinical trial protocols may list the delivery device in 3 ways that raise questions with regulators:

- chosen by the site
- chosen by the doctor (off-label use)
- chosen by sponsor but lacks regulatory approval* for CGTP indication

Why these scenarios are a problem

Sponsor must ensure safety of the delivery device in a clinical trial for this indication for use, including:

- Accurate delivery in this tissue
- Compatibility of drug, formulation, and device
- Training/instructions to perform procedure
- Sterility, (re)packaging, reprocessing
- Shelf life and endotoxins

An existing device approval* only means risks are mitigated when using device for the approved indication for use

To ensure safety when the device is used in a clinical trial for this new indication for use, regulators may ask for evidence that these risks have been mitigated for this clinical trial use

*“approval” is authorization to market the device, which could be an approval of a Premarket Application, granting of a de novo, clearance of a 510(k), or CE Mark
Who generates evidence that the device can be used safely in a clinical trial for this new indication for use?

Device manufacturer
Who has the device expertise, but may not be interested in this indication?

Drug Sponsor
Who wants to use the device in the clinical study, but doesn’t have the device expertise?

Agreement / collaboration for parallel development can de-risk study start
Examples of evidence on device to seek authorization to use in a clinical trial for this new indication for use

- risk assessment/comparison of device’s approved indications of use vs proposed clinical trial indications for use
- modifications / reprocessing / sterilization of device after acquiring from 3rd party
- device names, description, patient contacting components, principle of operation, diagrams
- proper use by the intended user in the intended use environment using the instructions/labelling
- risk analysis for the entire product
- control of device changes

- dose accuracy and compatibility of device/drug/formulation under worst case conditions (e.g. preparation, temperature, pressure, etc)
- how supplied
- biocompatibility, sterility, endotoxin, packaging, shelf life, performance data, electrical safety, electromagnetic compatibility, software

May need to generate evidence for a range of devices if there are more delivery device choices

Regulators could ask for a separate device clinical application since it is a new use of the device and new drug
Further regulatory considerations for the marketing authorization

Include device in drug application?
More challenging to change the device in the future since data is specific to that device

Separate device application (510(k))?
Who submits it?
What is the exclusivity?

Where is the device clinical evidence?
Clinical protocols must be modified to include device endpoints
De-risk the regulatory path for delivery devices used to deliver new therapies

Establish an agreement / collaboration for parallel development of the delivery device

Regardless of approval status, generate evidence that the device can be used for a new indications for use in a clinical trial

Ensure clinical study collects device endpoints for use in a device marketing application

For marketing applications, consider the pros/cons of a separate device application (e.g. 510(k), PMA, de novo, CE Mark)
Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com