

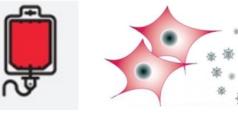
Material Qualification from a CDMO Perspective: A Phase-Appropriate Approach to Material & Component Risk Control

CELL & GENE THERAPY PRODUCTS SUMMIT: MANUFACTURING, QUALITY AND REGULATORY CONSIDERATIONS

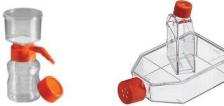
Presented By: Athenesia Faggins, Ph.D. WuXi Advanced Therapies Director, Analytical Development Athenesia.Faggins@wuxiapptec.com Overview

What we know...

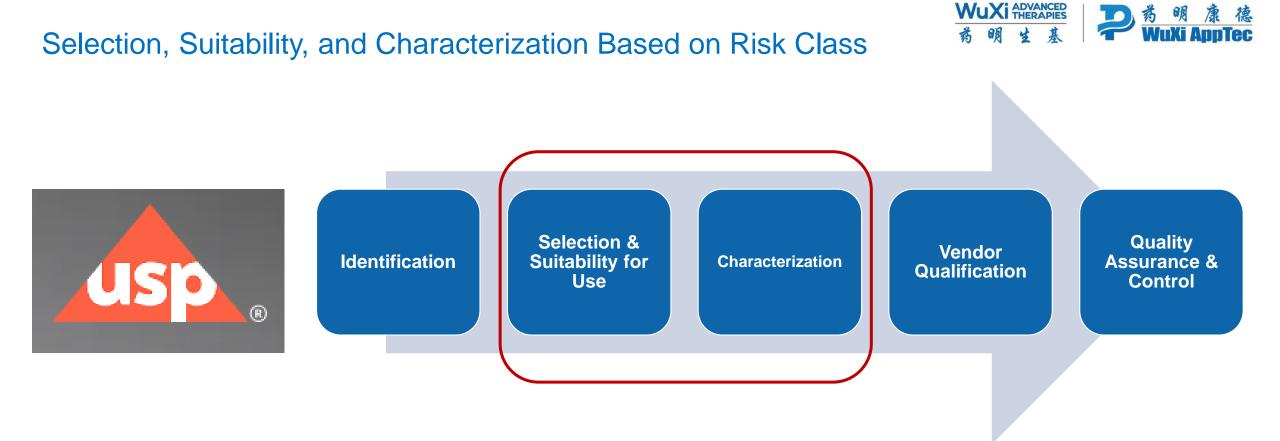
Now what?

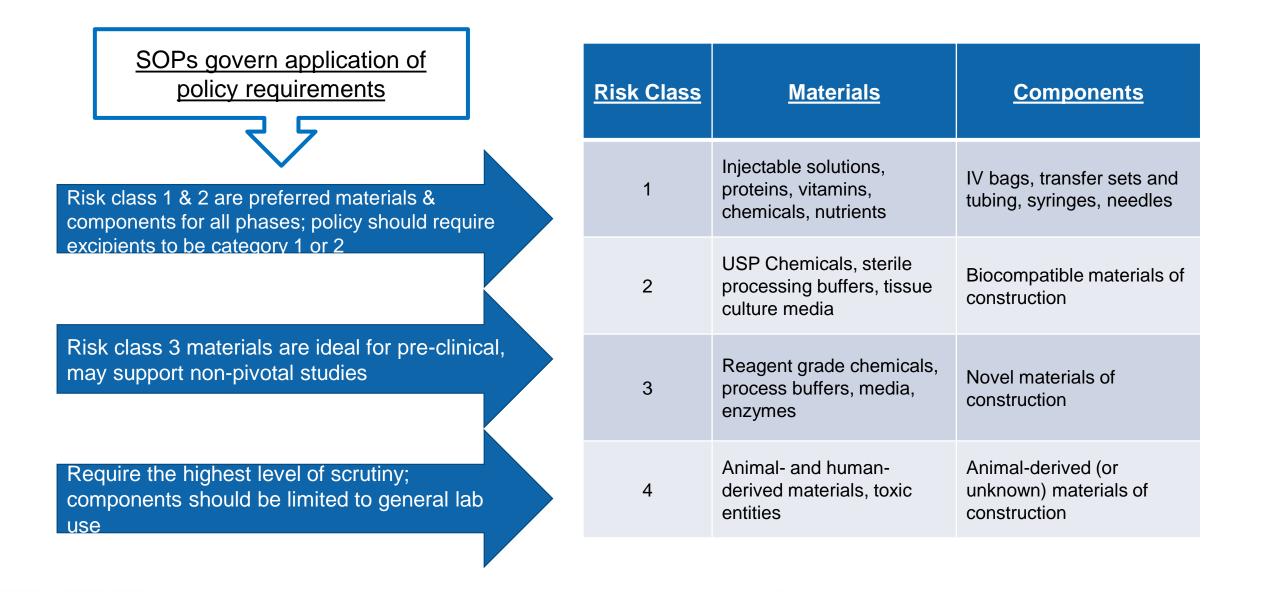


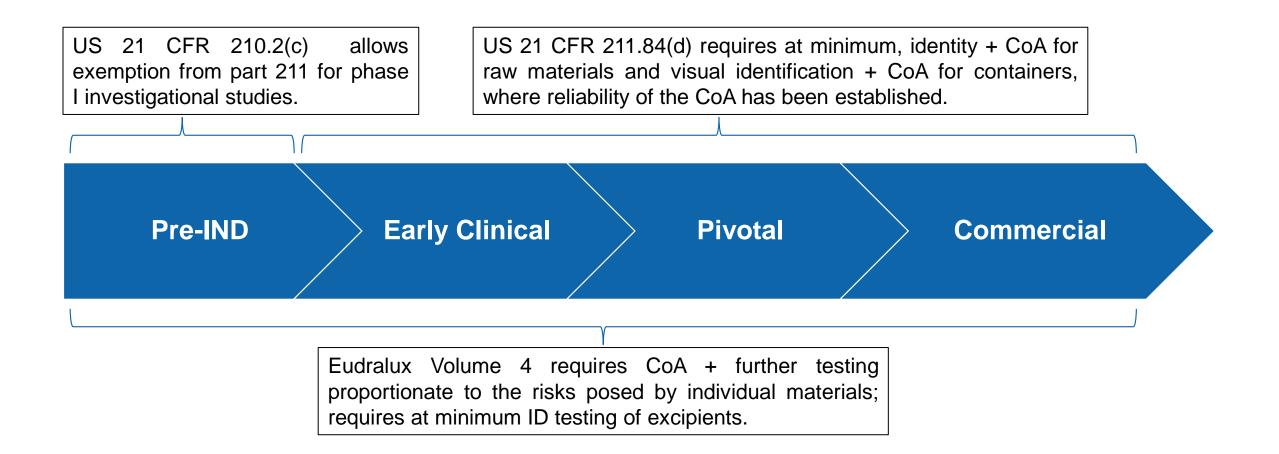
- / How do we apply risk classification to selection, characterization and control requirements?
- / How do we determine what is an acceptable level of risk mitigation?
- / Is full CoA testing required for all materials, for all phases?
- / How do we control components?
- / What about E & L testing?
- / What about selecting alternate materials and components?


Comprehensive Control Starts at the Policy Level

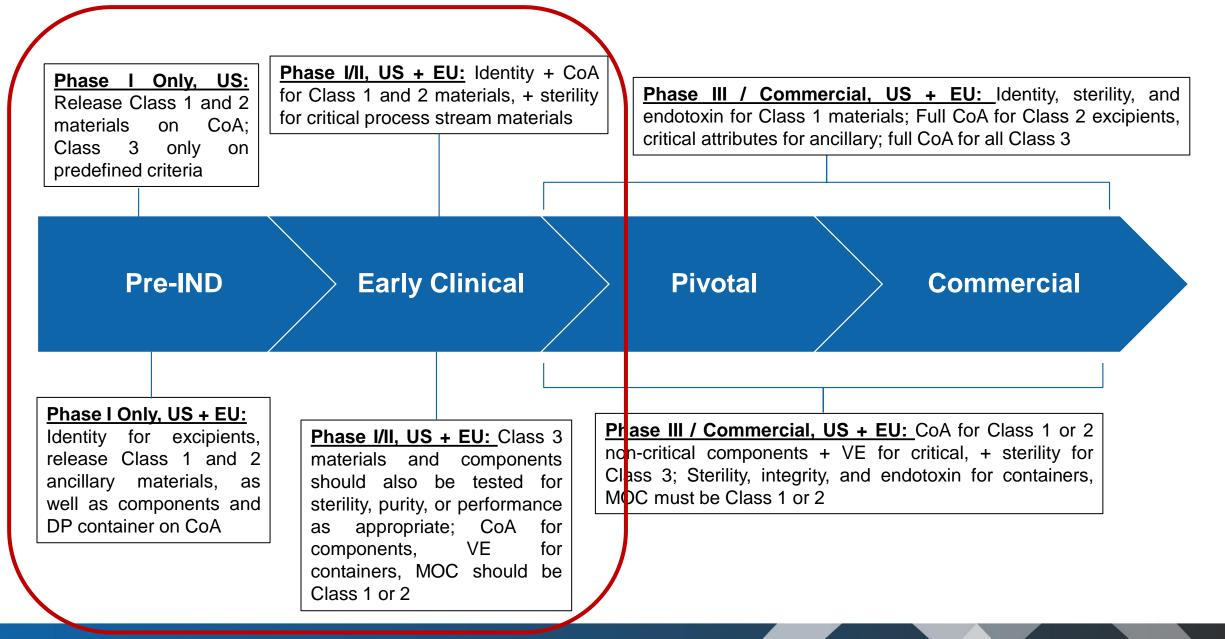
Quality Policy should govern identification / selection, suitability for intended use, characterization, qualification, and control of all materials and components.






Potential risk categories outlined in USP <1043> for ancillary materials provides a solid framework for application of phase-appropriate requirements

Selection Based on Suitability for Use According to USP <1043>



Characterization Based on Intended Usage

Example - 21 CFR 210 vs. 21 CFR 211

Client A – Phase I Only, 21 CFR 210

- / Start-up with limited capital
- / Pre-IND stage
- / Limited clinical study
- / Phase I FP will not be used is subsequent studies
- / Benefits:
 - / Reduce material-related costs by foregoing testing
 - / Reduce turnaround time for GMP release of materials
 - Shorten timeline for execution and IND submission

Client B – Phase I/II, 21 CFR 211

- / Well-established company and / or pipeline
- / Pre- to post-IND
- / Phase I FP may be used in subsequent studies
- / Material-related costs are not prohibitive
- Benefits:
 - / Enables seamless transition from phase I to II
 - / Reduce risk of material-related product impact through limited characterization

Criticality Assessment

• Determine which components are in scope for risk assessment

Suitability Review

• Verify all components in scope for assessment are of suitable quality

Functionality Assessment

• Identify specific conditions of use


Risk Evaluation

• Evaluate risk factors using a matrix approach – Temperature, Contact Time, Process Stream Composition, Material Reactive – to determine overall risk rating for each component

Risk Control

• Develop E & L study design and component release specifications for visual identification

Risk Evaluation According to USP <1665>

	Identify process parameters					
	RISK FACTOR DIMENSIONS					
	Duration of Contact, Material Reactivity					
am an		Low (L)	Medium (M)	High (H)		
eratu s Stre ositic	Low (L)	L	L	М		
Temperature, Process Stream Composition	Medium (M)	L	М	Н		
	High (H)	М	Н	н		

Determine Likelihood of Leaching

RISK FACTOR – LIKELIHOOD OF LEACHING			
High (H)	<i>Medium-High</i> temperature and duration of contact; <i>Medium-High</i> material reactivity; <i>Medium-High</i> organic content within the process stream.		
Moderate (M)	Combined temperature and duration of contact of <i>Medium</i> ; combined material reactivity and process stream organic content of <i>Medium</i> .		
Low (L)	<i>Low-Moderate</i> temperature and duration of contact; <i>Low-Moderate</i> material reactivity; <i>Low-Moderate</i> process stream organic content within the process stream.		

	Determine Likelihood of Persisting				
	RISK FACTOR – LIKELIHOOD OF PERSISTING				
High (H)	Component used <i>Downstream</i> , in direct contact with process intermediate, and / or finished vector product.				
Moderate (M)	Component used <i>Upstream</i> without purification of process intermediate; component used <i>Downstream</i> with subsequent purification.				
Low (L)	Component used <i>Upstream</i> with subsequent purification of process intermediate, finished vector product.				

Determine Overall Risk Level					
OVERALL RISK LEVEL					
	Likelihood of Leaching				
Likelihood of Persisting		Low (L)	Moderate (M)	High (H)	
	Low (L)	L	L	М	
	Moderate (M)	L	М	н	
	High (H)	М	н	н	

Risk Evaluation According to USP <1665>

Components with USP Class VI MOC used upstream with *Low to Medium* risk factor dimensions

Components with USP Class VI MOC used in downstream processing and / or final filling with *Low to Medium* risk factor dimensions

Components for final filling with *High* risk factor dimensions <u>OR</u> components with unknown / not well-established MOC

OVERALL RISK LEVEL	COMPONENT CHARACTERISTICS	CHARACTERIZATION TESTING	
Low (L)	Well-characterized with adequately established Identity, Biological Reactivity, General Physiochemical Properties, and Composition, where Likelihood of Leaching is Low to Moderate, Likelihood of Persisting is Low	No Testing	
Medium (M)	Well-characterized with adequately established Identity, Biological Reactivity, General Physiochemical Properties, and Composition, where both Likelihood of Leaching and Likelihood of Persisting are Low to Moderate	USP <665> Plastic Additives	
High (H)	Well-characterized with adequately established Identity, Biological Reactivity, General Physiochemical Properties, and Composition, where Likelihood of Leaching and Likelihood of Persisting are Moderate to High OR Identity and / or Biological Reactivity not well- established or unknown	USP <854> Identification using Infrared Spectrophotometry USP <87> Biological Reactivity USP <665> Plastic Additives AND Extractable Elements	

MATERIAL	MATERIAL TYPE			
CHARACTERISTIC(S)	Reagent	STARTING / SOURCE	ANCILLARY	EXCIPIENT
Formulation / Composition	x	х	x	х
Finished Form	x	х	x	х
Packaging / Dispensing			x	х
Specifications		x		х
Intended Use	x	х	х	х

Define equivalence based on material / component type and intended usage

Mitigate supply chain disruptions through use of alternate materials

0.000	COMPONENT TYPE			
COMPONENT CHARACTERISTIC(S)	Solution Transfer / Transport	MIXING / BIOPROCESSING / STORAGE	FILTRATION / DOWNSTREAM PROCESSING	FINAL FILTRATION / FILLING
Materials of Construction		x	x	x
Biological Reactivity	x	x	x	x
Design	х		x	x
Processing / Preparation for Use		x	x	x
Conditions of Use	x	x	x	x
Function	x	х	x	x
Process Stream Composition	х	х	x	x

Key Referenced Documents

- / Code of Federal Regulations Title 21, Food and Drugs, Chapter I, Food and Drug Administration, Department of Health and Human Services, Subchapter C, Drugs: General, Part 211, Current Good Manufacturing Practice for Finished Pharmaceuticals, Subpart E, Control of Components and Drug Product Containers and Closures
- / EudraLex, The Rules Governing Medicinal Products in the European Union, Volume 4, Good Manufacturing Practice, Guidelines to Good Manufacturing Practice Specific to Advanced Therapy Medicinal Products
- / U.S. Pharmacopeia (USP) General Chapter <1043>, Ancillary Materials for Cell, Gene, and Tissue-Engineered Products, the United States Pharmacopeial Convention
- / U.S. Pharmacopeia (USP) General Chapter <1661>, Evaluation of Plastic Packaging Systems for Pharmaceutical Use and their Materials of Construction
- / U.S. Pharmacopeia (USP) General Chapter <1665>, Characterization and Qualification of Plastic Components and Systems Used to Manufacture Pharmaceutical Drugs Products and Biopharmaceutical Drug Substances and Products

Athenesia Faggins, Ph. D

WuXi Advanced Therapies, Philadelphia Athenesia.Faggins@wuxiapptec.com