bluebirdbio

Comparability Strategies for Autologous Genetically Modified Hematopoietic Stem Cells LET'S RECODE THE STORY (GM-HSC)

Mike Havert

• Employee and stockholder - bluebird bio

Overview

- Introduce GM-HSC and product pipeline
 - -Variable starting materials
 - -Analytics under development
- •Manufacturing changes and approaches for demonstrating comparability
 - -Analytical Equivalence and Split Apheresis
 - -Analytics and Manufacturing improvements

bluebird bio products and pipeline

GM-HSC treatment and manufacture overview

Potential treatments based on genetic modification of stem cells

Adapted from Hematopoietic Stem Cell in Acute Myeloid Leukemia Development, Sérgio Paulo Bydlowski and Felipe de Lara Janz

GM-HSC historical development

GM-HSC manufacture and controls

CONFIDENTIAL 8

Allo-HPC/cord blood cell products

BLA 125397 HemaCord (Hematopoietic Progenitor Cells-Cord)

Product Characteristics ²	Testing	Sample (Type and Timing)	Results of Product Testing
Safety	Infectious diseases – Testing Required. (21 CFR 1271.45 through 1271.90)	Maternal peripheral blood obtained within 7 days of cord blood collection – Type and Timing Required. (21 CFR 1271.80(a) and (b))	All tests negative except non- treponemal test for syphilis when confirmatory test is negative. (Cytomegalovirus (CMV) results are recorded.) CMV – Report
	Sterility – Bacterial and fungal cultures – Testing Required. (21 CFR 211.165(b), and 21 CFR 610.12)	HPC-C (pre- cryopreservation) **	No growth
	Hemoglobin	Cord blood*	No homozygous homoglobinopathy
Purity and Potency ³	Total nucleated cells (TNC)	HPC-C (pre- cryopreservation)	≥ 5.0 x 10 ⁸ TNC ***/ unit HPC-C
	Viable nucleated cells	HPC-C (pre- cryopreservation)	≥ 85% viable nucleated cells
	Viable CD34+ cells (flow cytometry)	HPC-C (pre- cryopreservation)	≥ 1.25 x 10 ⁶ viable CD34+ cells ****/ unit HPC-C
Identity	Human leukocyte	Cord blood	Devel
	antigen (HLA) Typing		Report
	Confirmatory HLA typing	Attached segment of HPC-C	Confirms initial typing
	Blood Group and Rh	Coord blood	Desert

Other purity and potency assays may be considered under the BLA.

* Cord blood = a sample of unmanipulated cord blood. A red cell sample or other cord blood aliquot obtained after volume reduction may be used for testing with appropriately validated reagents or test systems.

** Sample may be obtained before or after addition of the cryoprotectant.

*** Based on 20 kg recipient, a target dose of ≥ 2.5 x 10⁷ nucleated cells/kg and ≥ 70% post-thaw recovery = 1.7 x 10⁷ nucleated cells/kg.

Variability of CD34+ cell concentration

Median CD34/µL throughout mobilization*

*Uchida et al. Haematologica 2020 "Safe and efficient peripheral blood stem cell collection in patients with sickle cell disease "

ь.

bluebird bio manufacturing has changed over time

- Facility (CMO)
- Process
- Materials
- Intermediates
- Specification
- Analytical procedures
- Excipients

How do we know the product is still safe?

How do we know the product is still effective?

How do we know the products are comparable?

bluebird bio manufacturing has changed over time

- Facility (CMO)
- Process
- Materials
- Intermediates
- Specification
- Analytical procedures
- Excipients

Mitigation High Risk Technology Low Frequency Transfer Change **Moderate Risk** Control Low Risk **High Frequency**

Technology transfer

- Transfer of manufacturing processes and/or analytical procedures between facilities or laboratories
- Technology transfers take the outputs of process or method development activities and transfer the knowledge to a different location where a process or analytical procedure will be operated.

ISPE Good Practice Guide: Technology Transfer 3rd Edition

WHO guidelines on transfer of technology in pharmaceutical manufacturing

Technology transfer overview

Regulatory standards for evaluating risk under IND

- CMC changes that impact Safety 21 CFR 312.42(b)(1)(i)
 - FDA may place a proposed or ongoing Phase 1 investigation on clinical hold if it finds that: Human subjects are or would be exposed to an <u>unreasonable and significant risk</u> of illness or injury
- CMC changes that impact Efficacy 21 CFR 312.42(b)(4)
 - FDA may place a proposed or ongoing investigation that is <u>not designed to be adequate and</u> <u>well-controlled</u>
 - Applies to all trials, but usually used for phase 3/pivotal

Types of comparability exercises

- Analytical
- Nonclinical / animal model
- Clinical

Analytical comparability considerations

ICH Q5E Comparability of Biotechnological/Biological Products Subject to Changes in Their Manufacturing Process

- Pre-change vs Post-change
 - Full scale vs lab scale manufacturing runs
 - Retrospective or prospective?
 - Lot retains
 - Split apheresis
- Sample size how many?
- What are analytics?
 - Lot release (validated?)
 - More than release
 - Characterization tests
 - In process test
 - Stability data
- Statistical assessment regarding equivalence
 - Demonstrating sameness
 - Setting study criteria

Split Apheresis comparability

- Split starting material eliminates person-to-person variability
- Healthy donor
- Test panel (no potency) can restore gene expression to cells that already have it
 - Total nucleated cells (TNC)
 - -%CD34+ cells
 - Viable CD34+ cells

Split Apheresis comparability

CONFIDENTIAL 19 19

Analytics and manufacturing improvements

- Develop analytics and bioanalytics
- Optimize manufacturing process in lab
 - -Improved product quality
 - -Pre-change post-change*
- Technology transfer to CMO
- Update CMC section IND
- Clinical studies

***ICHQ5E** - When pre- and post-change products are not comparable, please consult the appropriate regional regulatory authority

 Not possible to assess functional activity in final drug product (CD34+ cells) if transgene is not expressed

 Not possible to functional activity in final drug product (CD34+ cells) if transgene is not expressed

- Gene modification corrects arrest at enucleation step in β -thalassemia
- Potency can be measured as a relative increase in % enucleated cells

Image adapted from: hubpages.com/education/General-Considerations-In-Hematology-Blood-Formation-In-Erythropoiesis

Analytics and manufacturing improvements in clinical studies

bluebirdbio

Zynteglo EPAR - public assessment report 14-Feb-20

Summary

- Technology transfer
- Invest in analytics
 - Potency and stability indicating assays
 - Bioanalytics and data science too
 - Less variability is better
- Minimize manufacturing variability (split aph)
- Get clinical experience (introduce changes early)
- Learn from mistakes
 - Small scale models to de-risk

The bluebird flock

Helena Madden Ilya Shestopalov Richard Colvin Leslie Wilder Matt Hibbert

Cell Analytics

Christine Beaudry Lauren Beaudin Brandon Nguyen Agnes Lin Steve Duguay Stem Cell Biology Gretchen Lewis

Melissa Bonner

Cell Process Development

> Erin Meister Kayla McLeod Craig Jones John Pierciey

Leadership & IP

Michael McDonald Iva Holden Susan Abu-Absi Derek Adams

