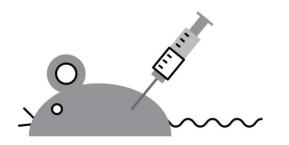


Relative Infectivity as a Reliable Alternative to the TCID₅₀ Assay

Win Den Cheung, Ph.D. Associate Director, Cell-Based Assays, Analytical Development

wcheung@regenxbio.com

AAV gene therapies for rare diseases

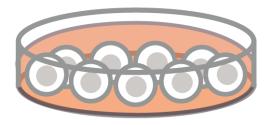

- The recent approvals of Luxturna[™] and Zolgensma[®] have provided validation for the use of AAV as a gene delivery platform, especially in the treatment of rare genetic diseases
- For rare diseases, early clinical success may lead to expedited product development and approvals

Product approval requires a potency assay that:

- Measures the biological activity or activities specific to the product
- Is validated to be accurate, sensitive, specific, and reproducible
- Includes appropriate reference materials, standards, and/or controls
- Provides quantitative data that can indicate stability, in order to establish dating periods
- Development of a potency assay is also critical for supporting <u>product comparability</u> and facilitating product development

Comparison of in vivo vs. in vitro approaches for AAV potency assay development

In Vivo


Can be designed to represent most aspects of the product's mechanism of action, depending on the selected animal model

High biological variability

- Limited quantitative ability
- Limited sensitivity for detecting changes upon stability
- Long time to results

EGENXBIO

Results can take months

In Vitro

Can be designed to represent many aspects of the product's mechanism of action, including transfer and biological effect of the target transgene

1 Lower biological variability

- Capable of providing quantitative results, relative to well-characterized reference standard
- More sensitive to changes upon stability
- **û** Shorter time to results
 - Results may be turned around in a week

3

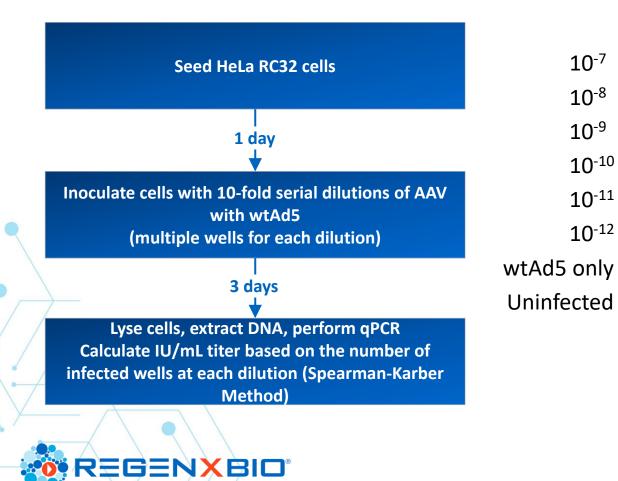
Multiple coordinated steps are required for AAV transduction

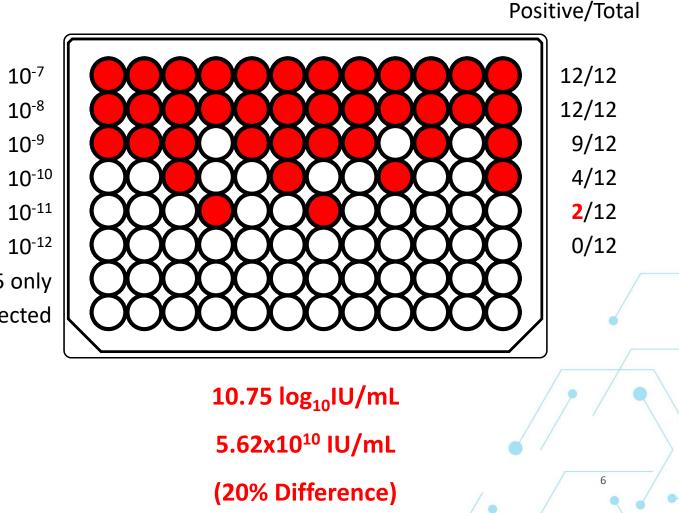
- Problem: In vitro methods that measure delivery of the transgene <u>as well as the</u> <u>biological effect of the</u> <u>expressed sequence</u> can take extensive time and effort to develop, which can slow the pace of product development
- Solution: Use a <u>quantitative</u> platform *in vitro* method that measures transgene delivery (infectivity) during early product development, along with less quantitative methods that confirm biological activity
 - Allow time for development of the *in vitro* potency method

EGENXBIO

Measuring infectivity for rAAV

- Virus infectivity: The capacity of viruses to <u>enter</u> the host cell and exploit its resources to <u>replicate</u> and produce progeny infectious viral particles
- Traditional virological methods were developed 60-100 years ago to quantify infectious virus particles using cells permissive to infection *in vitro*
 - Infectious center assays (i.e., plaque, focus forming assays)
 - Endpoint dilution assays (i.e., median tissue culture infectious dose or TCID₅₀, most probable number or MPN)


However:


- wtAAV requires a helper virus for replication
- rAAV gene therapy products lack the rep and cap genes and are incapable of replication, even in the presence of helper virus
- Different AAV serotypes display differences in tissue and cell tropism

The TCID₅₀ assay was modified for AAV in order to accommodate the traditional definition of virus infectivity:

- HeLa RC32 cells stably expressing AAV2 rep and cap genes
- Co-infection with wild-type Adenovirus 5 helper virus
- Instead of cytopathic effect (CPE), wells are scored as infected or uninfected based on the measurement of vector genome replication

REGENXBID

The TCID₅₀ infectious titer method has very high assay variability

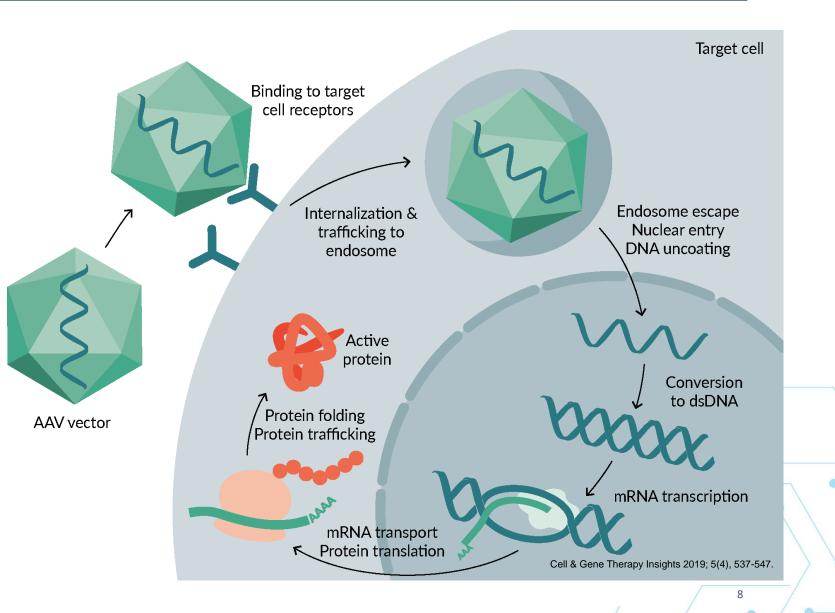
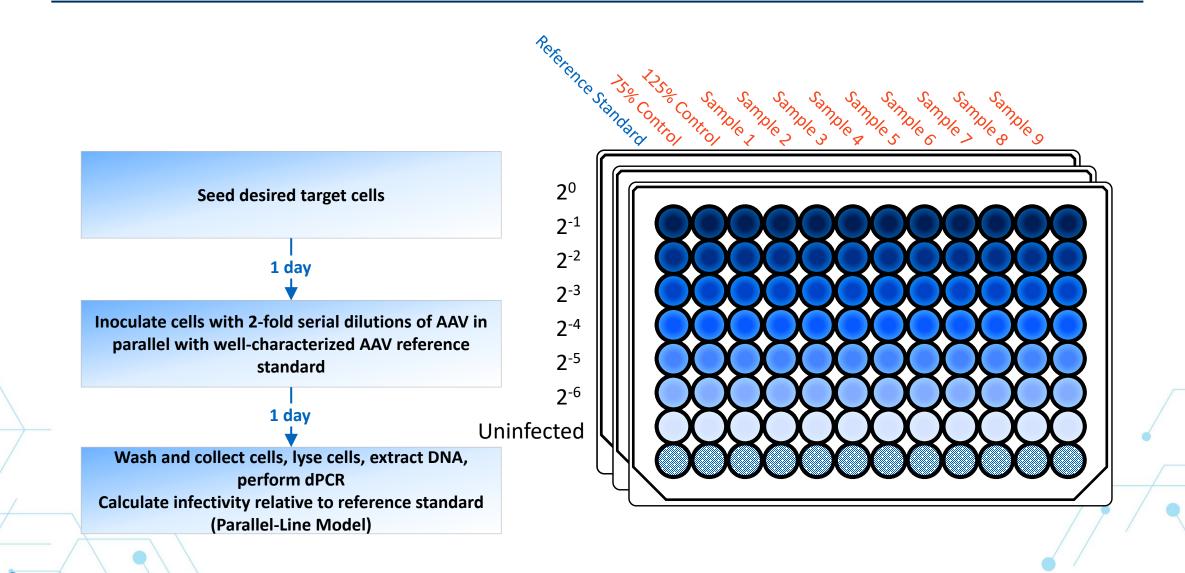

- ~200% geometric coefficient of variation (CV) is typical for TCID₅₀
- TCID₅₀ is an unreliable tool for measuring differences in infectivity across different vector preparations or changes as a result of degradation

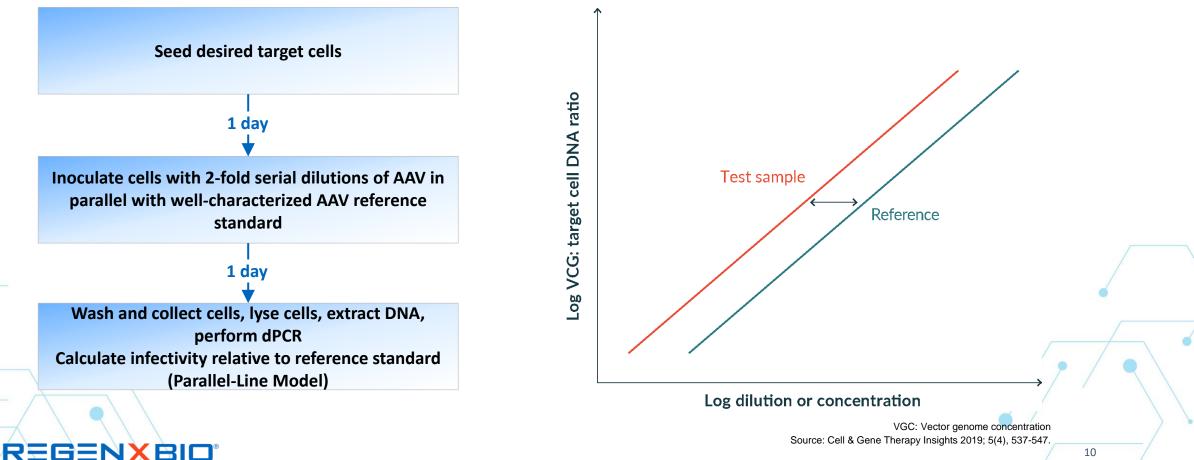
		TABLE 5. FINAL rAA	V2 Reference St	TANDARD M	ATERIAL TIT	er Estimates	6 after Transform	iation and Modeling
	Seed HeLa RC32 cells	Titer units (method)	<i>Transformation</i> ^a	Mean	Lower 95% confidence limit for the mean	Upper 95% confidence limit for the mean	$\pm 2~SD$	$\pm 3 SD$
	1 day	Particles/ml (ELISA) Vector genomes/ml (qPCR)	Untransformed Square root	${}^{9.18\times10^{11}}_{3.28\times10^{10}}$	$\begin{array}{c} 7.89{\times}10^{11} \\ 2.70{\times}10^{10} \end{array}$	${}^{1.05\times10^{12}}_{4.75\times10^{10}}$	3.73×10^{11} -1.45×1 9.00×10 ⁸ -1.04×1	$\begin{array}{cccc} 0^{12} & 1.04 \times 10^{11} 1.78 \times 10^{12} \\ 0^{11} & 0 1.66 \times 10^{11} \end{array}$
	★	Transducing units/ml	Square root	5.09×10^{8}	2.00×10^{8}	9.60×10^{8}	$0-2.47 \times 10^{9}$	0-4.00×10 ⁹
	Inoculate cells with 10-fold serial dilutions of AAV	Infectious units/ml (TCID ₅₀)	Log ₁₀	4.37×10^{9}	2.06×10 ⁹	9.26×10 ⁹	5.15×10 ⁸ –3.71×1	0^{10} 1.77×10 ⁸ -1.08×10 ¹¹
	with wtAd5 (multiple wells for each dilution)				SD = (0.46 log ₁	$_{0}$ IU/mL \rightarrow 19	1% Geometric CV
	 3 days	Table 4. Final rAAV8 Reference Standard Material Titer Estimates After Transformation and Modeling					ATES	
	Lyse cells, extract DNA, perform qPCR	Titer units	Transformati	on Mee	confi	wer 95% idence limit the mean	Upper 95% confidence limit for the mean	±2 SD
2	Calculate IU/mL titer based on the number of infected wells at each dilution (Spearman-Karber	Particles (pt)/ml		5.5× 5.75×	10^{11} 3.	26×10^{11} 05×10^{11}	6.75×10^{11} 1.09×10^{12}	1.06×10^{11} to 9.94×10^{11} 4.57×10^{10} to 7.24×10^{12}
	Method)	Infectious units (IU)/m	nl Log ₁₀	1.26×		46×10 ⁸ 0.49 log₁	$\frac{2.51\times10^9}{10/\text{mL}} \rightarrow 20$	$\frac{1.32 \times 10^8 \text{ to } 1.20 \times 10^{10}}{1.32 \times 10^8 \text{ Geometric CV}}$

How can you measure rAAV infectivity with better precision?

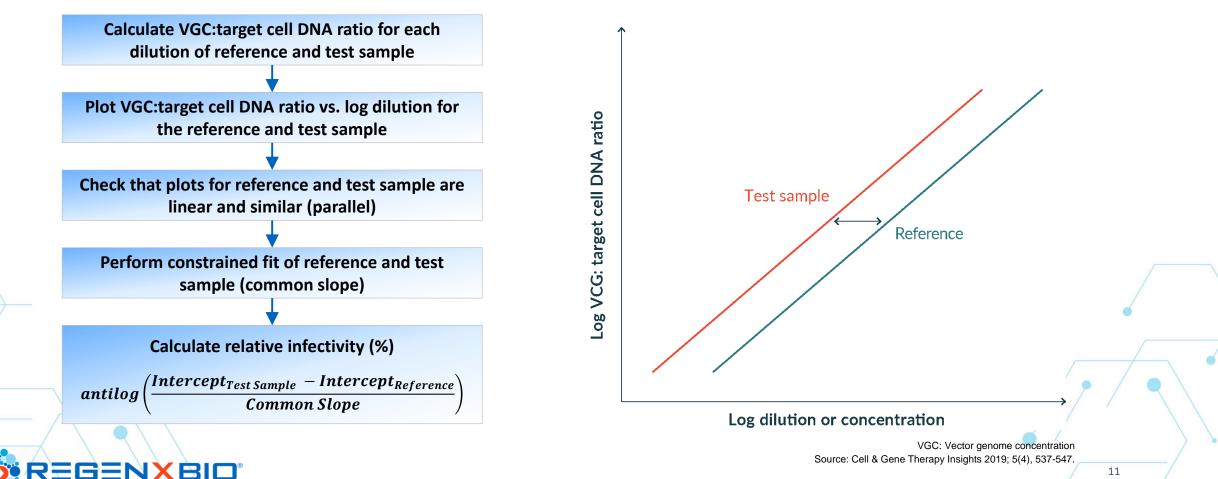

- Since rAAV cannot replicate, rAAV infectivity should be defined as the capacity of rAAV to <u>enter</u> the target cell and deliver its genome
- Measure delivery of the AAV vector genome to target cells relative to a reference standard

REGENXBID

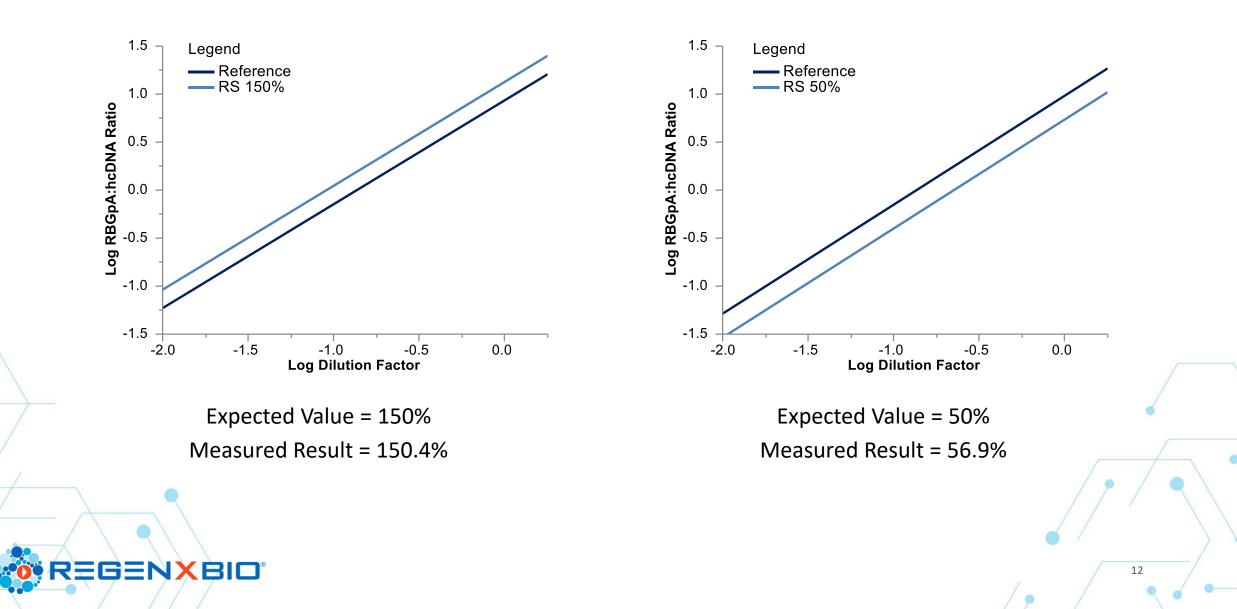
The relative infectivity method as a reliable alternative to the TCID₅₀ method


REGENXBID

9

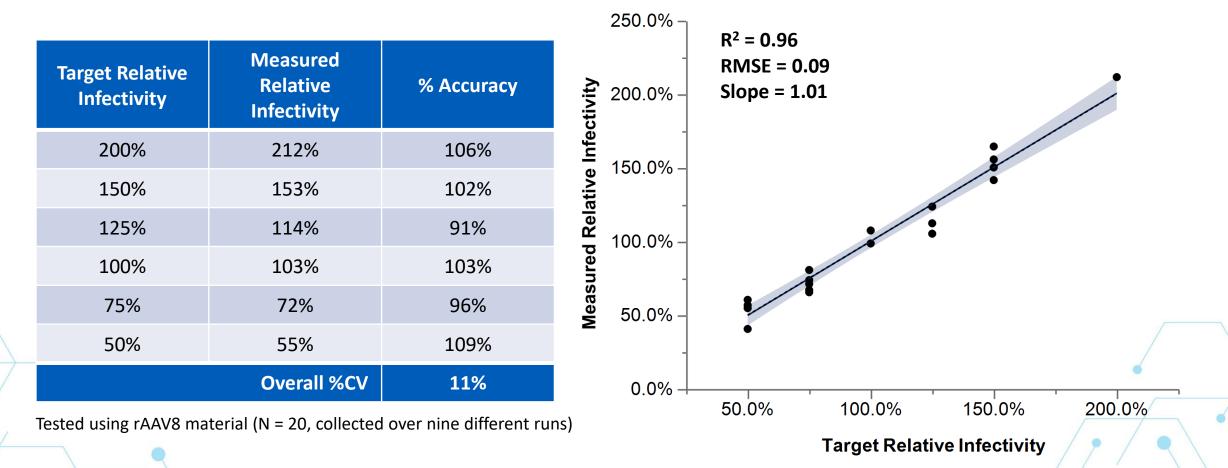

The relative infectivity method as a reliable alternative to the TCID₅₀ method

- Faster time to result than $TCID_{50}$ (2 days vs 4 days)
- Requires a well-characterized AAV reference standard that is known to be infectious
- Does not require co-infection with wild-type Adenovirus



The relative infectivity method as a reliable alternative to the TCID₅₀ method

- Faster time to result than $TCID_{50}$ (2 days vs 4 days)
- **Requires a well-characterized AAV reference standard that is known to be infectious**
- Does not require co-infection with wild-type Adenovirus


Example relative infectivity method results using reference material

The relative infectivity method is linear, accurate, and precise

EGENXBIO

 The relative infectivity method is capable of quantifying relatively small differences in the *in vitro* infectivity of AAV vectors

Applications of the relative infectivity method

Comparisons across different products

REGENXBID

	Serotype	Relative Infectivity		
Product A	AAV9	124%		
Product B	AAV9	75%		
Product C	AAV9	78%		
Product D	AAV8	89%		

Note: Different dPCR methods were used for the different products

Comparisons across multiple batches of the same product (i.e., product comparability)

	Batch / Lot	Relative Infectivity
Product D	1	103%
Product D	2	108%
Product D	3	81%
Product D	4	102%
Product D	5	90%

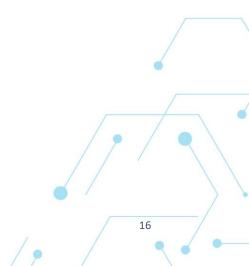
Applications of the relative infectivity method

Detect changes upon stress & stability

Cond	Relative Infectivity	
Untreated Control	-80°C	99%
Thermal Stressed	60°C for 10 minutes	375%

Compare the ability of vectors to infect different cells & conditions

Target Cells	Relative Infectivity
HEK293 (Reference)	100%
HEK293 with Modification A	147%
HEK293 with Modifications A and B	6,968%


- Assess improvements in infectivity for engineered AAV capsid variants
- Probe AAV infection kinetics

Limitations of the relative infectivity method

- Accurate quantitation of the vector genome concentration is required for the test samples and the reference standard
- The use of a well-characterized reference standard with known biological activity or infectivity is critical
- The method is intended to measure intracellular vector genomes, and therefore does not provide a measure of target protein expression or biological activity of the transgene

Conclusions

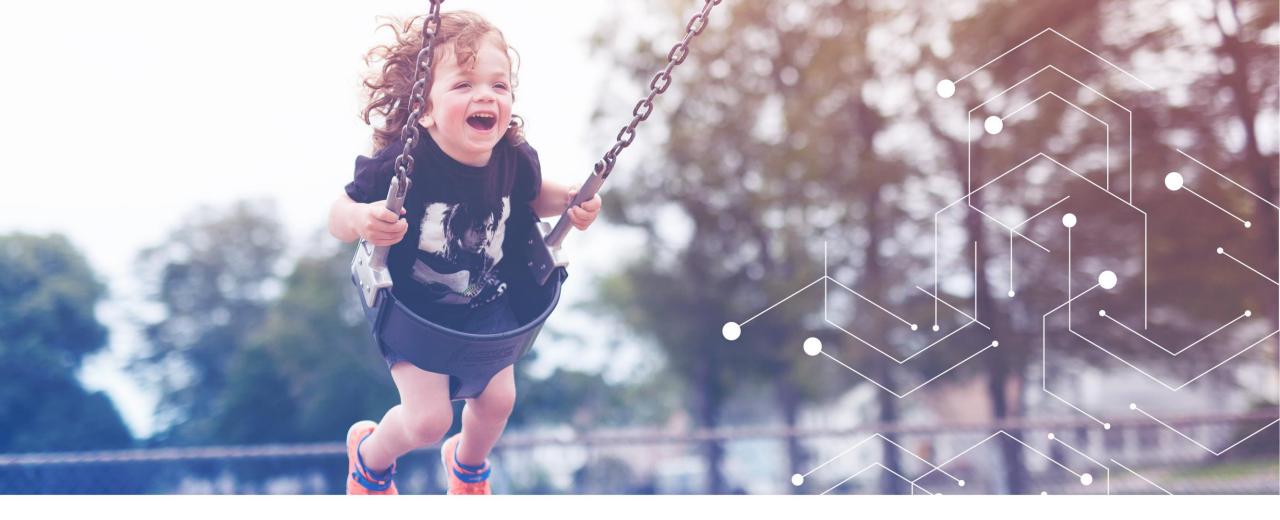
- We have developed a platform-based *in vitro* relative infectivity method that is capable of detecting differences as low as 25% in the infectivity of AAV vectors, representing a significant improvement over TCID₅₀
- The relative infectivity method is linear, accurate, and precise from at least 50-200% relative infectivity
- The relative infectivity method is capable of detecting a change in infectivity upon forced degradation
- The relative infectivity method may be a useful tool in early development for comparing infectivity across different preparations, products, serotypes, and target cells
- In the absence of a quantitative product-specific *in vitro* potency method, the relative infectivity assay is a more reliable tool than TCID₅₀ for supporting product comparability and monitoring product stability

The relative infectivity method may provide a measure of product potency for early phase development until a quantitative product-specific in vitro potency method can be developed and implemented

• REGENXBIO

17

Cell-Based Assays Team


Casey Chapman Hosam Ewis Chloe Maddux Salma Mahzoon Aaron von Kerczek Zhen Yang Raza Zaidi Vibha Yadav

Analytical Development

Mike Byrne Tomoko Maekawa Zhuchun Wu Zhenhong Li

Process Development

Thank You

