

Lentiviral vectors – considerations for their use in gene-modified cell therapy production

12 July 2018

James Miskin, Chief Technical Officer, Oxford BioMedica

CASSS Cell & Gene Therapy Products Symposium

Oxford BioMedica – an overview

>20 years as a specialist in lentiviral vectors

- ✓ 1st to administer *in vivo* (both brain and eye)
- √ 1st approved advanced therapy in the US using LentiVector Enabled technology, Novartis's Kymriah™
- >200 patients treated by Oxford BioMedica or its partners
- Four Phase I/II studies completed with encouraging safety and efficacy

LentiVector Enabled gene delivery platform

- ✓ IP extensive IP comprising both patents and know-how
- Facilities state-of-the-art bioprocessing and laboratory facilities
- ✓ **Employees** over 370 full time employees
- Capabilities Manufacture, Analytics, Quality (lentiviral vectors)

Oxford BioMedica Facilities in the UK

Facilities less than 1 hour from London Heathrow Airport:

Windrush Court

- Corporate HQ & Laboratories
 71,955 sq.ft (6,684 sq.m)
- GMP Warehouse Hub 2,691 sq.ft (250 sq.m).

Harrow House & Chancery Gate

19,375 sq.ft (1,800 sq.m)

- cGMP production facility
- Two clean room suites
- GMP QC microbiology laboratories
- Raw material testing
- GMP cold chain warehouse & office space

Yarnton

18,300 sq.ft (1,700 sq.m)

- cGMP production facility
- One clean room suite

APPROVED

Source: https://resources.oncourse.iu.edu/access/content/user/leema/profilepage/oxford.html

Cell and Gene Therapy

Towards successful commercialisation

Established mode of action

Rare diseases; e.g. β-Thalassaemia, ADA-SCID, haemophilia, orphan ocular

High incidence /
prevalence
diseases;
e.g. Parkinson's
disease, CF, cancer
(e.g. CAR-T, TCR)

Clinical proof of concept

Clear unambiguous clinical data in severe disease, 'accelerated' route to market

Promising signs of efficacy in clinical trials, 'traditional' route to market?

Manufacturing, COGs

Requirement for mid- to large-scale, high quality vector / cell manufacturing with 'acceptable' COGs (for developers and payers)

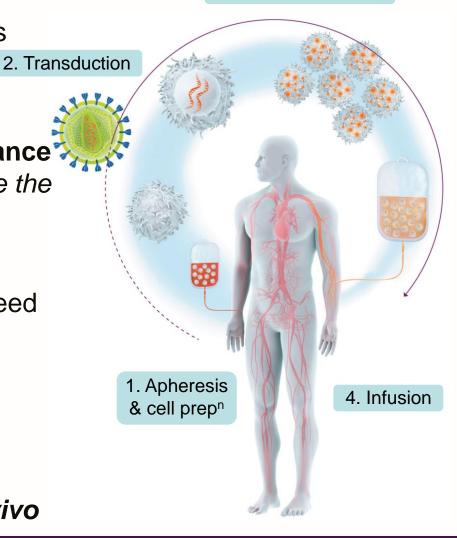
Scaled clinical operations

Indication-specific

Requirements for vectors in ex vivo products

3. Cell Manufacture

 Current focus on use in autologous products (i.e. individual patient batches)


Vector is treated as a drug substance

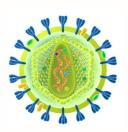
 there is no opportunity to sterilise the cell product after vector addition

 Regardless of terminology (Raw Material, Starting Material, etc.), need to apply similar CMC approach to parenteral (sterile) products

 Drastically increased demand (inhouse and partners) – since 2012

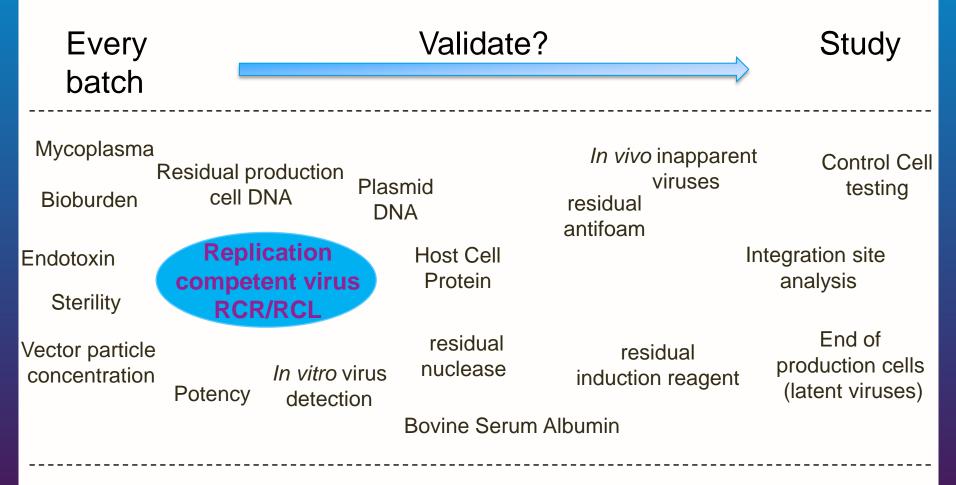
Plus considerable demand for in vivo

Lentiviral vector system



Benefit(s)	Feature
Safety—absence of replication-competent lentivirus (RCL) Yield—efficient vector production	Vector components segregated on 4 separate plasmids
	Open Reading Frames (ORFs) of nonessential accessory genes and Tat removed
	Codon-optimized Gag/Pol
	Self-inactivating long terminal repeat sequence (SIN LTR)
	Heterologous envelope (VSV-G)
High expression in target cells	Regulatory sequence for enhanced expression

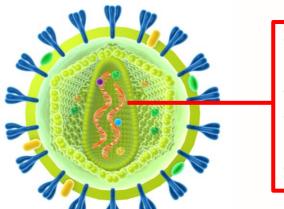
Vector – overview of testing



- Broad testing panel to ensure vector quality, safety, and consistent manufacture guided by process/vector structure and design
- Platform approach potency and identity product specific
- Validated analytics to support commercial

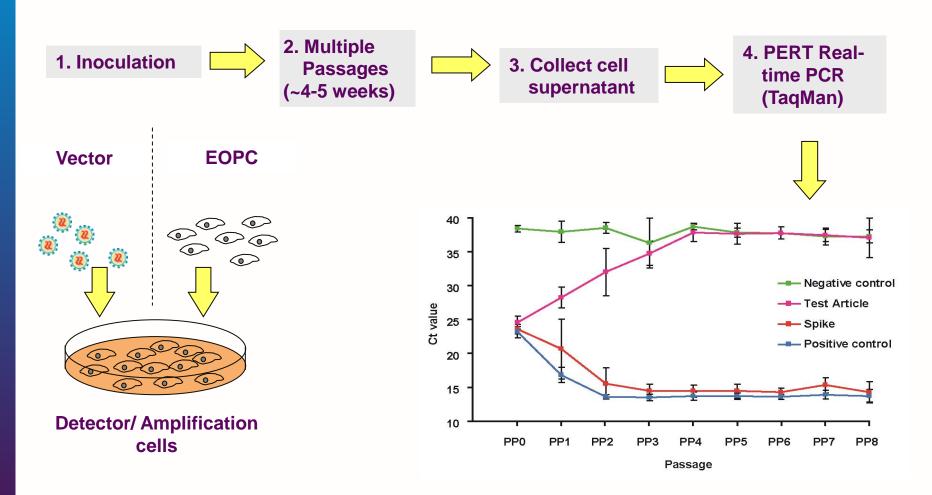
Testing	Comment
Appearance and description	Appearance consistent with vector suspension
Identity	qRT-PCR (e.g. to CAR-specific sequence)
Safety	Assures absence of microbial contamination and RCL – see next 3 slides
Purity	Measures both vector and impurities
Quantity	p24 protein and vector RNA measured
Biological activity	Measurement of transduction of target cells

Vector – safety assessment



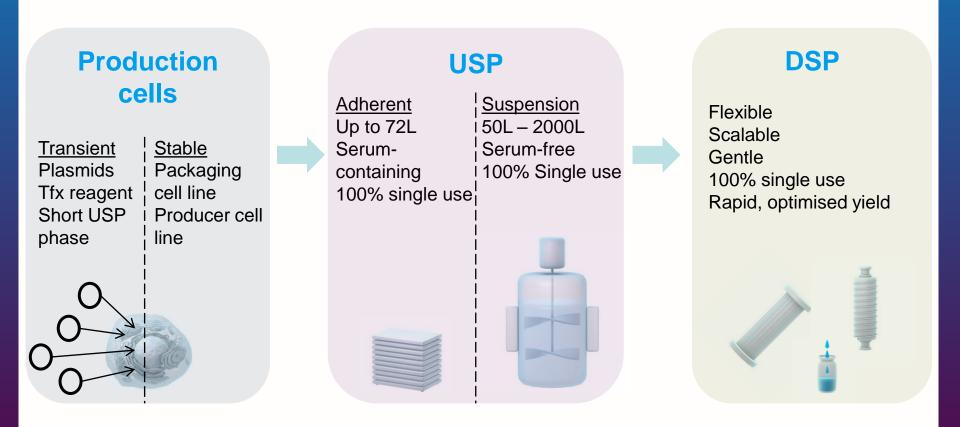
Actual testing performed may be dependent on production process, stage of clinical development

Vector – RCL testing


- Classic virus detection can't be used
 - 'Standard' infectivity assays cannot be used for lenti (e.g. focus formation)
 - PCR for partial recombinants presumes some prior knowledge of RCL
- Advantages of Product Enhanced Reverse Transcriptase (PERT) as endpoint detection as part of an infectivity assay:
 - Highly sensitive qPCR-based detection of RT activity
 - RT is common feature of all retroviruses
 - Method will detect any putative RCL without knowledge of structure

- Consistent co-packaging of RT enzyme in vector particles
- Estimated 10-100 copies per virion
- Allows for semi-quantitative (relative) assessment of vector / virus concentration
- Detects all retroviral RT

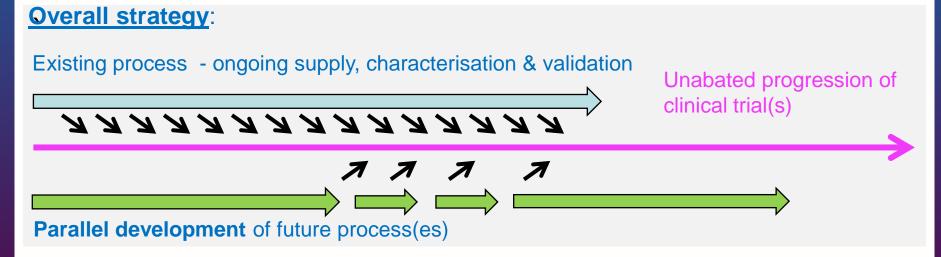
Vector – RCL testing



Routine analysis requires testing of final passage supernatant only

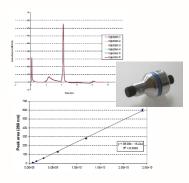
OXB vector process development strategies

 Holistic view of the development of 'next generation' lentiviral vector manufacturing, utilising closed systems wherever possible:



Manufacturing strategy

Satisfying current / future demand


- Considerations for current and future processes (strategy dependent on indication & phase of development):
 - Process complexity (multiple vessels vs single)
 - Manual handling requirements vs single use closed systems (risk, COGs)
 - Reliance on raw material supply (e.g. FBS vs serum-free)
 - Output per clean room suite (COGs), number of independent suites
 - Need to support OXB and partner projects and programmes

Scale up & manufacturing challenges

OXB process development roadmap

Development of rapid analytics for in-process and release testing

Automated, high through-put cell line generation

Stable, high producer packaging/producer cell lines

Media

Advanced Manufacturing **Platform**

Cells

Vector design & optimisation

Formulation, Fill & Finish

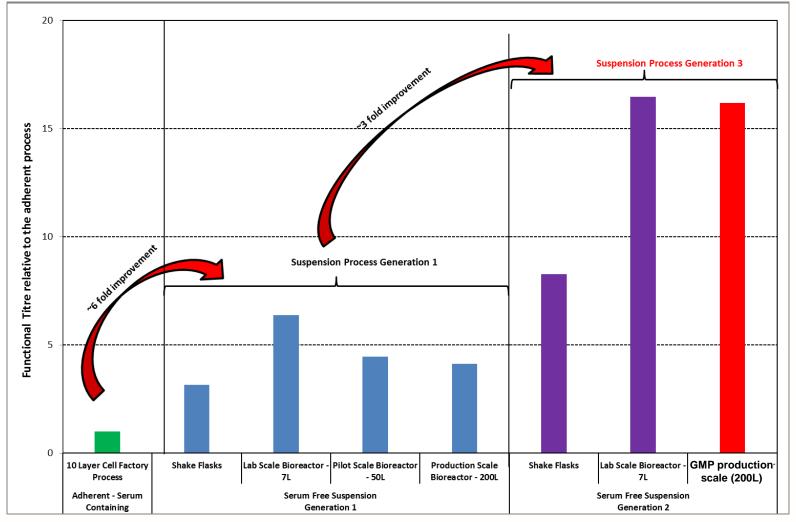
Purification development programme

Studies >200L

Scale-up

Process

Serum-free suspension culture in single-use bioreactor



Establish media & feed platform

Suspension process development

Continuous process improvement

GMP clean room facilities – operational

Matching capacity to demand

Flexible independent clean room suites for GMP vector manufacture, with segregated air handling, material transfer and personnel routes.

Single use systems (SUS) used throughout

- GMP1 Grade C/D (ISO 7/8) 4,198 sq. ft (390 sq. m) clean room suite
 - OXB's original clean room facility, acquired in 2011
 - Planar 2D technologies e.g. CF-10, areas for cell expansion and downstream processing
 - Operational and MHRA licenced (since 2012)
- GMP2 Grade C/D (ISO7/8) 2,691 sq.ft (250 sq. m) clean room suite
 - Suspension platform 2 x 50/200L Duo SUB
 - Planar 2D technologies e.g. CF-10
 - Operational readiness Operational and MHRA licenced (since May 2016)
- GMP4 Grade C/D (ISO7/8) 6,028 sq. ft (560 sq. m) new off-site API Facility
 - Suspension platform up to 2 x 50/200L Duo SUB
 - o Planar 2D technologies e.g. CF-10
 - o Areas for cell expansion, media make-up, buffer preparation and downstream processing
 - Operational and MHRA licenced (since Jan 2016)

2018 - OXB announced next phase of capacity expansion

Considerations for commercial vector supply

Company growth and investment (\$\$£££)

Dual supply, Single use

Ensure process robustness through development & optimisation

Scientifically sound analytics and initial specifications

Process Characterisation Process Validation

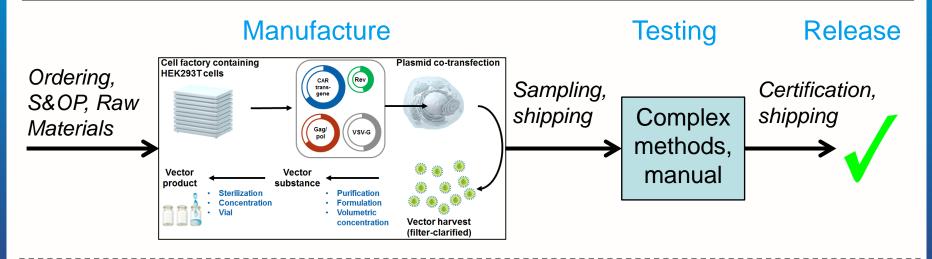
> Analytical validation Final specifications

Process Control strategy (NOR, PAR)

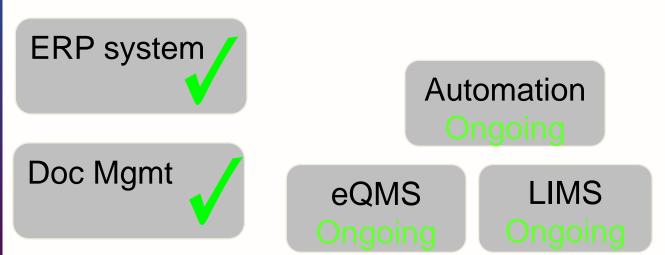
Key supply agreements (materials, components, suppliers, contractors)

Robust QMS

Regulatory support PLI & audit readiness


Production and testing capability

Adequate production scale


Materials

Batch manufacture and release process

Ongoing & future improvements

Concluding remarks

Gene and cell therapy has reached the stage where several very promising therapies have reached the commercial phase

Strimvelis® – retroviral vector-based cell therapy product for ADA-SCID, launched summer 2016

b NOVARTIS CTL019 - worldwide first commercial product based on lentiviral vector technology (Kymriah™ FDA approved Aug 2017, CHMP positive opinion Jun 2018)

GILEAD Kite/Gilead – approval of Yescarta (FDA approved Oct 2017, positive opinion Jun 2018)

Spark Therapeutics Voretigene Neparvovec for RPE65-mediated IRD (Luxturna™ FDA approved Dec 2017)

Conclusion – need to continue to develop and evolve technologies and CMC strategies to support anticipated level of patient demand

