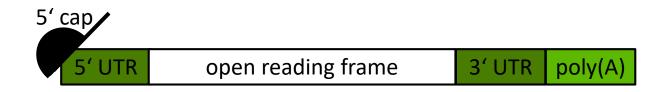

mRNA as a Platform Technology Ideally Suited for Individualized Therapeutics

Andreas N. Kuhn


(Vice President RNA Biochemistry & Manufacturing)

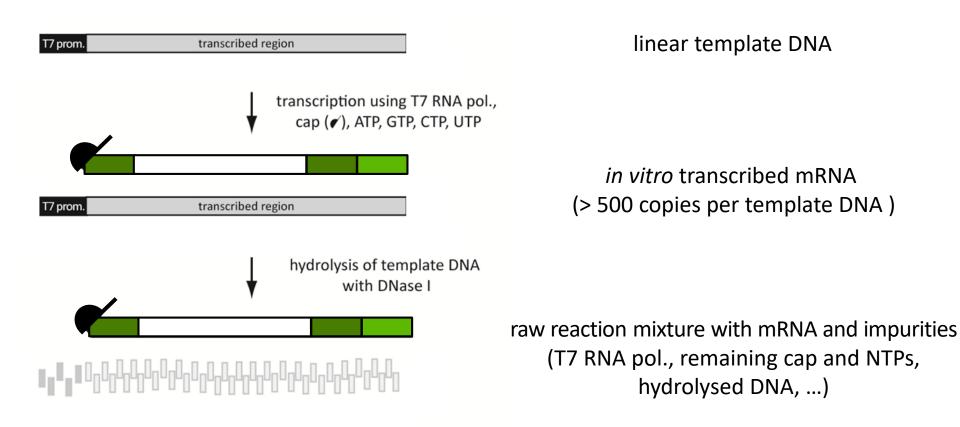
Therapeutic messenger (m)RNAs are used to introduce the genetic information for a protein, encoded by the respective mRNA, into a cell of interest

Applications for mRNA therapeutics

Direct application of mRNA:

- Cancer immunotherapy (induction of antigen-specific T cells)
- Vaccination against viral infections
- Transcript replacement therapy

mRNA-transfected cells:


- Cancer immunotherapy (antigen-encoding RNAs into dendritic cells or RNAs coding for T cell receptors or chimeric antigen receptors into T cells)
- mRNA-induced pluripotent stem cells
- Genetically engineered cells using mRNA

- No integration into the genome
- Needs only to reach the cytoplasm, not the nucleus
- Transient expression of the encoded protein/antigen
- Degraded into nucleotides, i.e. no toxic metabolites
- Antigen delivery independent of HLA-haplotype
- Can be used for the expression of cytoplasmic proteins
- mRNA can act as its own adjuvant (recognition by toll-like receptors, PKR and members of the RIG-I family) or can be made "immune-silent"
- Relatively simple production process independent of the sequence
- Possibility to introduce new functionalities through sequence modifications and chemically modified building blocks

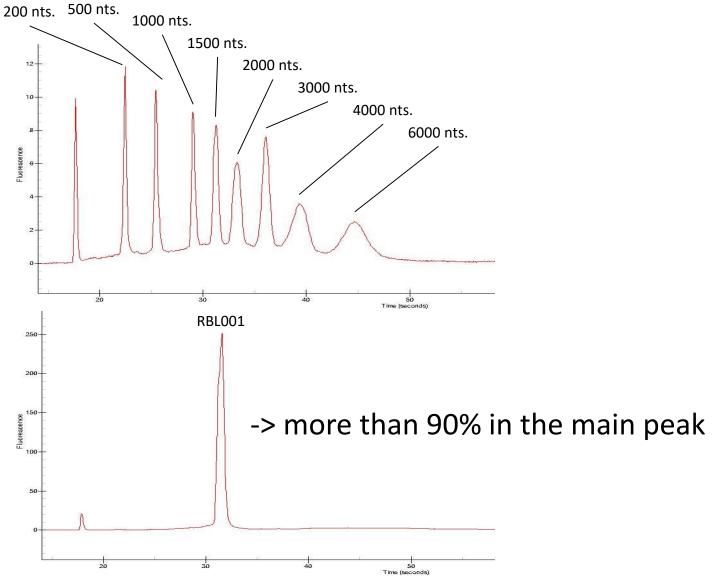
completely cell-free process

(but some of the starting materials come from *E. coli*)

Materials required for mRNA synthesis

- Critical starting materials
- Cap dinucleotide (building block)
- ATP, GTP, CTP, UTP (building blocks)
- Template DNA (defines mRNA sequence)
- Reagents
- T7 RNA polymerase
- 👂 DNase I
- Components of the reaction buffer

What to remove:


- process-related impurities (e.g. left-over NTPs, T7 RNA pol., template DNA)
- product-related impurities (e.g. break off transcripts, side products)

Challenges:

- highly charged and dynamic molecule
- RNA vs. DNA removing the chemical cousin
- scalability of the purification process

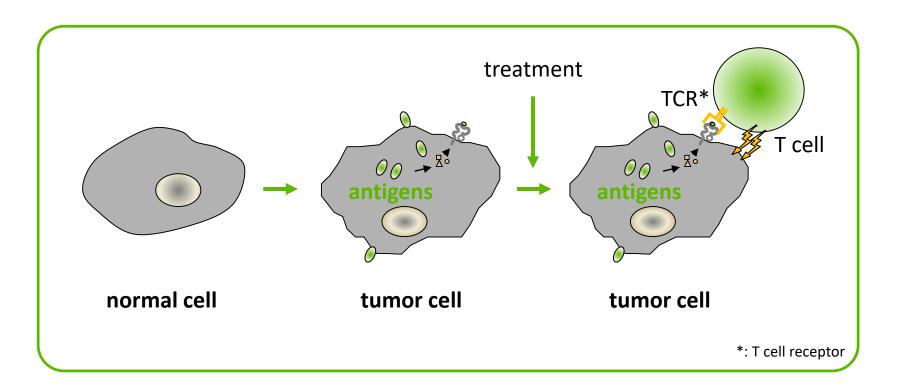
Integrity of purified mRNA

Quality control

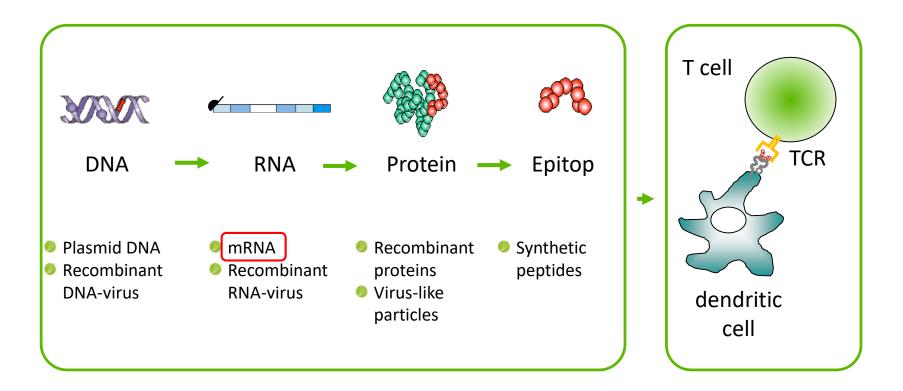
BIONTECH

Testing each batch of mRNA for:

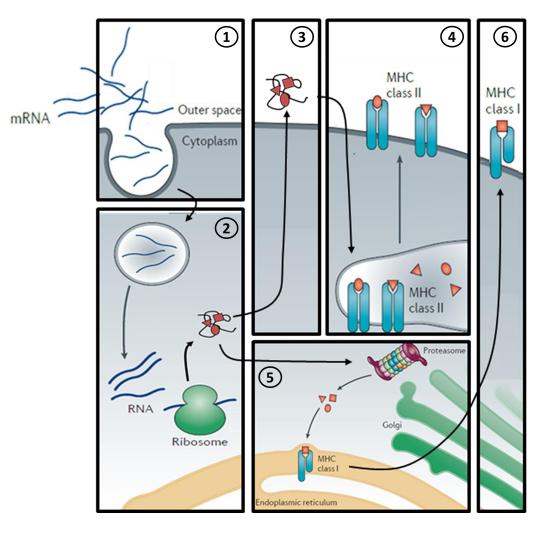
- concentration
- identity
- integrity
- appearance (clear, colorless)
- particles (visible/subvisible)
- pH
- osmolality
- critical residuals (e.g. template DNA)
- bioburden/sterility
- functionality/potency


Duration of the process

- Transcription reaction: 1 day
- mRNA purification: 1 2 days (dependent on scale)
- Formulation, fill & finish: 1 day
- Quality control & release: 3 weeks (includes testing for sterility)

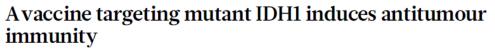


Tumor cells express tumor-associated antigens (TAAs), which can be specifically recognized by T lymphocytes via antigen-specific T cell receptors (TCRs)



(Tumor) antigen-specific T cells can be induced by loading antigen-presenting cells (e.g. dendritic cells) with the corresponding epitopes. This can be done with different formats.

Mechanism of action



Induction and expansion of antigen-specific CD8⁺ and CD4⁺ T cells (via epitopes presented on MHC class I and II complexes, respectively)

- Systemic distribution
- Anti-tumoral effect

dendritic cell

Neoepitopes as superior antigenic structures

Theresa Schumacher^{1,2*}, Lukas Bunse^{1,2*}, Stefan Pusch^{3,4}, Felix Sahm^{3,4}, Benedikt Wiestler^{1,5}, Jasmin Quandt⁶, Oliver Menn¹, Matthias Osswald^{1,5}, Iris Oezen^{1,2}, Martina Ott^{1,2}, Melanie Keil^{1,2}, Jörg Balß^{2,4}, Katharina Rauschenbach^{1,2}, Agnieszka K. Grabowska⁷, Isabel Vogler⁸, Jan Diekmann⁹, Nico Trautwein¹⁰, Stefan B. Eichmüller⁶, Jürgen Okun¹¹, Stefan Stevanovič¹⁰, Angelika B. Riemer⁷, Ugur Sahin⁹, Manuel A. Friese¹², Philipp Beckhove⁶, Andreas von Deimling^{3,4}, Wolfgang Wick^{1,5} & Michael Platten^{1,2}

Mutant MHC class II epitopes drive therapeutic immune responses to cancer

Sebastian Kreiter¹, Mathias Vormehr²*, Niels van de Roemer²*, Mustafa Diken¹, Martin Löwer¹, Jan Diekmann^{1,3}, Sebastian Boegel¹, Barbara Schrörs¹, Fulvia Vascotto¹, John C. Castle¹, Arbel D. Tadmor¹, Stephen P. Schoenberger⁴, Christoph Huber², Özlem Türeci¹§ & Ugur Sahin^{1,2,3}§

Exploiting the Mutanome for Tumor Vaccination

John C. Castle¹, Sebastian Kreiter¹, Jan Diekmann¹, Martin Löwer¹, Niels van de Roemer^{1,2}, Jos de Graaf¹, Abderraouf Selmi¹, Mustafa Diken¹, Sebastian Boegel^{1,2}, Claudia Paret¹, Michael Koslowski¹, Andreas N. Kuhn^{1,3}, Cedrik M. Britten^{2,3}, Christoph Huber^{1,3}, Özlem Türeci⁴, and Ugur Sahin^{1,2,3}

Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer

Naiyer A. Rizvi,^{1,2*} Matthew D. Hellmann,^{1,2*} Alexandra Snyder,^{1,2,3*} Pia Kvistborg,⁴ Vladimir Makarov,³ Jonathan J. Havel,³ William Lee,⁵ Jianda Yuan,⁶ Phillip Wong,⁶ Teresa S. Ho,⁶ Martin L. Miller,⁷ Natasha Rekhtman,⁸ Andre L. Moreira,⁸ Fawzia Ibrahim,¹ Cameron Bruggeman,⁹ Billel Gasmi,¹⁰ Roberta Zappasodi,¹⁰ Yuka Maeda,¹⁰ Chris Sander,⁷ Edward B. Garon,¹¹ Taha Merghoub,^{1,10} Jedd D. Wolchok,^{1,2,10} Ton N. Schumacher,⁴ Timothy A. Chan^{2,3,5†} VOLUME 31 · NUMBER 32 · NOVEMBER 10 2013

JOURNAL OF CLINICAL ONCOLOGY

Tumor Exome Analysis Reveals Neoantigen-Specific T-Cell Reactivity in an Ipilimumab-Responsive Melanoma

tumor cell

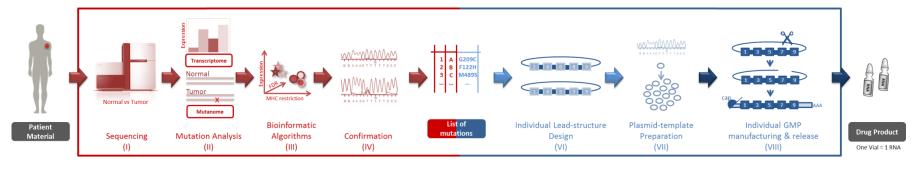
Cancer Immunotherapy Based on Mutation-Specific CD4+ T Cells in a Patient with Epithelial Cancer

Eric Tran,¹ Simon Turcotte,¹* Alena Gros,¹ Paul F. Robbins,¹ Yong-Chen Lu,¹ Mark E. Dudley,¹† John R. Wunderlich,¹ Robert P. Somerville,¹ Katherine Hogan,¹ Christian S. Hinrichs,¹ Maria R. Parkhurst,¹ James C. Yang,¹ Steven A. Rosenberg¹‡

The response of autologous T cells to a human melanoma is dominated by mutated neoantigens

Volker Lennerz[†], Martina Fatho[†], Chiara Gentilini[‡], Roy A. Frye[§], Alexander Lifke[†], Dorothea Ferel[†], Catherine Wölfel[†], Christoph Huber[†], and Thomas Wölfel^{†1}

Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade


Nicholas McGranahan,^{1,2,3*} Andrew J. S. Furness,^{3,4*} Rachel Rosenthal,^{3*} Sofie Ramskov,⁵ Rikke Lyngaa,⁵ Sunil Kumar Sainl,⁵ Mariam Jamal-Hanjani,⁸ Gareth A. Wilson,^{1,3} Nicolai J. Birkbak,^{1,3} Crispin T. Hiley,^{1,3} Thomas B. K. Watkins,^{1,3} Seema Shafl,³ Nirupa Murugaesu,³ Richard Mitter,¹ Ayse U. Akarca,^{4,6} Joseph Linares,^{4,6} Teresa Marafioti,^{4,6} Jake Y. Henry,^{3,4} Eliezer M. Van Allen,^{7,8,9} Diana Miao,^{7,8} Bastian Schilling,^{10,11} Dirk Schadendorf,^{10,11} Levi A. Garraway,^{7,8,9} Vladimir Makarov,¹² Naiyer A. Rizvi,¹³ Alexandra Snyder,^{14,15} Matthew D. Hellmann,^{14,15} Taha Merghoub,^{14,16} Jedd D. Wolchok,^{14,15,16} Sachet A. Shukla,^{7,8} Catherine J. Wu,^{7,8,17,18} Karl S. Peggs,^{3,4} Timothy A. Chan,¹³ Sine R. Hadrup,⁵ Sergio A. Quezada,^{3,4+} Charles Swanton^{1,3+}

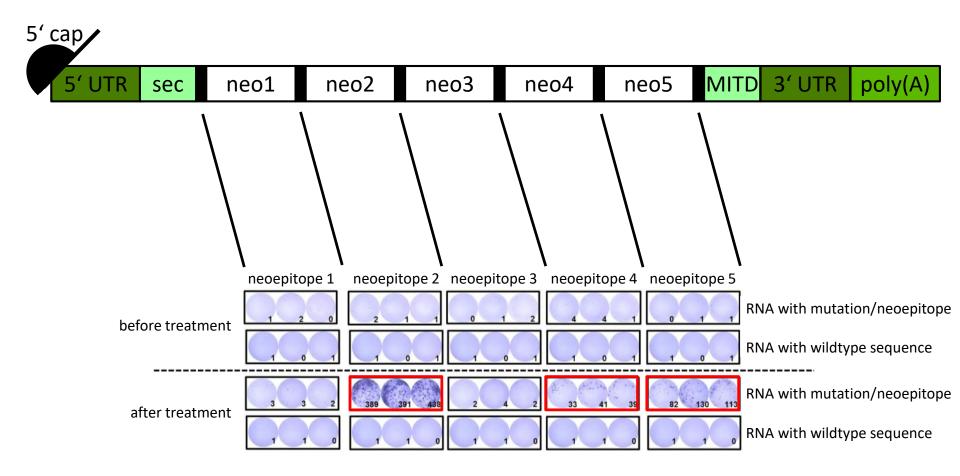
Patient- and tumor-specific mutations get utilized...

...to selectively activate the immune system with mRNA-vaccines tailored to the individual patient.

Individualized Vaccine Against Cancer:

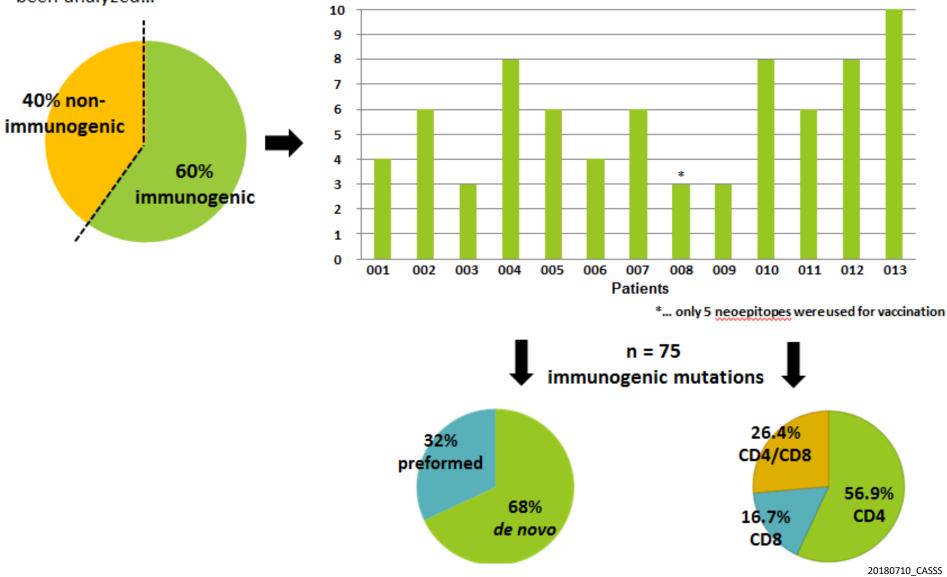
- On demand-manufacturing
- Suitable for potentially all tumor indications, also with low incidences
- No negative thymic selection of high-affinity TCRs against epitopes defined by patient- and tumor-specific mutations
- Induction of immune responses with high tumor specificity

In 2013, we started the first clinical trial targeting neoepitopes defined by patient- and tumor-specific mutations:


- Indication: malignant melanoma stage IIIa IV
- Therapy: two mRNAs encoding in total ten neoepitopes
- Dose: 0.5 or 1.0 mg of each RNA with eight applications within six weeks
- Number of patients: 13
- Primary endpoints: safety, adverse reactions and tolerability profile of multiple dosing with IVAC[®]
- Secondary endpoints: treatment-induced antigen-specific immune responses

Immune responses in patients

Leukaphereses before the first and after the last injection with IVAC[®] are acquired to provide sufficient PBMCs for a comprehensive immune monitoring program.


IFNγ-ELISpots are utilized to quantify antigen-specific immune-responses either after *in vitro*-expansion or directly *ex vivo*.

Immunogenicity of neoepitopes

All **13 patients with a total of 125 neoepitopes** selected for the manufacture of their IVAC[®] RNAs have been analyzed...

- mRNA is a platform technology applicable in several therapeutic fields
- Manufacturing of mRNA is fast and cost-effective; one process suitable for essentially all sequences
- Neoepitopes defined by cancer-specific mutations and encoded on mRNA (IVAC[®]) give rise to an anti-tumoral immune response in animal models
- A first-in-concept clinical study testing the IVAC[®] approach has demonstrated feasibility for a truly individualized treatment of patients
- For thirteen patients, an immune response against 60% of the neoepitopes that were targeted could be observed
- This approach is now further studied in two running clinical trials

- 🦻 Ugur Sahin
- The whole RNA Biochemistry & Manufacturing team
- Immunotherapies and Preclinical Research (Sebastian Kreiter)
- Protein Replacement Therapies (Katalin Kariko)
- RNA Formulation & Drug Delivery (Heinrich Haas)
- NGS (Valesca Bukur) and Bioinformatics (Jonathon Blake)
- BioNTech Innovative Manufacturing Services (Stephan Müller)
- Project Management (Birgit Pless and Robert Jabulowsky)
- Clinical Research (Alexandra Kemmer-Brück)
- Our collaboration partners
- The patients and their families
- And many more ...