

A Wholly Owned Subsidiary of Eli Lilly and Company

Case Study: Comparability between HEK293 and Sf9-Baculovirus AAV manufacturing processes

Garrett Daniels, Ph.D.

Director – Process Development

Prevail Therapeutics, a wholly owned subsidiary of Elil Lilly and Company

Adeno-associated virus (AAV) capsid is a variable multi-subunit vector

https://www.ncbi.nlm.nih.gov/Structure/pdb/1LP3

AAV virions are composed of 60 **capsid subunits:** VP1:VP2:VP3 at a 1:1:10 ratio

Each subunit has nine **variable regions** on the virion surface that determine the primary **tropism** and intracellular **trafficking**

There are 13 naturally occurring serotypes, each with variations of the capsid protein sequence

Case study Serotype:

• AAV9

AAV genome can be replaced with a therapeutic payload for delivery

modified from: https://www.dynotx.com/introduction-to-aav-as-a-gene-therapy-vector-part-1/

Wang et. al 2019

Only the **145 bp AAV ITRs** are **necessary** for AAV propagation. They induce transgene expression, play roles in vector production and ensure persistent transduction.

~96% of the AAV genome can be removed to accommodate **therapeutic transgenes** for gene therapy up to ~4.7kb.

CMC Strategy and Capabilities: Transition from HEK \rightarrow Sf9 platform

HEK293 Process

- Partnership with established
 CDMO with platform process
- Robust adherent HEK293
 process used to maximize
 speed to the clinic for early
 Prevail programs

Preval

of Fli Lilly and Compar

Sf9 Baculovirus Process

- Transitioned to baculovirus platform to establish highyield scalable process for future preclinical, clinical and commercial material and future pipeline
- Process and analytical development established at Prevail
- Process transferred to CDMO for GMP manufacturing for clinical supply
- Significant reduction of cost per dose

Process v1.0: HEK293 platform manufacturing using ultracentrifugation

Adherent culture

Ultracentrifugation

- Pros:
 - Established platform, more experience
- Cons:
 - Low productivity (pool upstream lots)
 - Very labor intensive and hard to scale (scale out vs. scale up)

5

• Ultracentrifugation: MFG challenges

Process v2.0: Sf9 platform manufacturing using scaleable chromatography

Suspension culture

Pros:

Chromatography: Affinity + Ion Exchange

- Can be manufactured in bioreactors and scaled up >250L scale
- Significantly higher productivity than HEK transfection systems lower long-term costs
- IEX can be a robust viral clearance step
- Equipment used similar to non-gene therapy manufacturing
- Cons:
 - Longer initial development time and fewer CDMOs with experience
 - Overall higher upfront costs and development time

A Wholly Owned Subsidiary of Eli Lilly and Company

Manufacturing Improvements: Sf9 platform significantly increases productivity

Relative Upstream Harvest Titer (vg/L)

- Significant COG reductions >10-fold
- More doses per batch
- Increased batch size supports characterization, release, and stability testing
- No need to pool upstream batches

Manufacturing Improvements: Sf9 platform significantly increases packaging efficiency

12.0-19.9% Empties (250L Sf9 scale N = 5)

8

ICH Q5E, comparability of biotechnological/biological products subject to changes in their manufacturing process

"The demonstration of comparability <u>does not necessarily</u> mean that the quality attributes of <u>the pre-</u> <u>change and post-change product are identical</u>, <u>but that they are highly similar</u> and that the existing knowledge is sufficiently predictive to ensure that any differences in quality attributes have <u>no adverse</u> <u>impact upon safety or efficacy of the drug product</u>."

 European Medicines Agency. Questions and answers on comparability considerations for advanced therapy medicinal products (ATMP) - Scientific guideline (2019).

How to Show Comparability ?

Products need be "highly similar" with "no adverse impact" in

Prevail Strategy to Show Comparability:

Challenges and approach

Challenges

Material (Few lots, limited availability)

Methods (Not all Methods Qualified)

Approach

Include non-GMP lots (PD) Prioritize testing

Test samples side-by-side Confirm w/ orthogonal method

Panel	Testing performed
Release testing	Full release panels including: Titer, Potency, Aggregation, Empty capsids, Residuals
Characterization	DNA impurities, Mass spec, TEM, VP ratio, Genome: Capsid ratio
Stability	Side by side accelerated stability – Product quality

Quality: AAV capsid proteins are identical between platforms

AAV 220-160-120-198-80-70-60-50-40-30-25-20-

SDS-PAGE

A Wholly Owned Subsidiar of Eli Lilly and Company

Quality: Capsid protein post-translational modifications are highly similar

Post-translation modification by mass spectrometry

PTM	HEK293 F	Sf9 Platform	
I I IVI	Lot 1	Lot 2	Lot 3
VP1 N-term	100% N-acetylated	100% N-acetylated	100% N-acetylated
VP2 N-term	Non-acetylated	Non-acetylated	Non-acetylated
VP3 N-term	100% acetylated	100% acetylated	100% acetylated
Deamidation of N314	1.1%	1.1%	1.1%
Deamidation of N329	2.2%	2.3%	7.2%
Deamidation of N409/N410	4.0%	5.4%	3.9%
Oxidation of N452	14.4%	12.7%	15.3%

Additionally, no glycosylation were detected

"Highly similar" post translation modification on the capsid proteins

Quality: AAV Particle distribution Sf9 platform shows fewer partial capsids

Analytical Ultracentrifugation

Process	Batch	Empty (%)	Partial (%)	Full (%)
	Lot 1	3.9	47.7	39.9
ПЕК	Lot 2	12.5	38.6	34.4
	Lot 1	6.6	3.0	76.5
SEO	Lot 2	8.6	3.5	80.9
559	Lot 3	5.5	5.2	82.8
	Lot 4	3.1	9.2	84.3

New platform: higher % Full, fewer Partials and Empty Capsids

"No adverse impact" on quality

Quality: Sf9 platform shows reduced residual packaged DNA

Sf9 platform: Fewer DNA residual

"No adverse impact" on quality

Efficacy: Sf9 platform shows comparable efficacy

In-vitro Analytical Potency Assay

Platform	Batch	Relative Potency
	Lot 1	153%
HEK293	Lot 2	143%
	Lot 3	142%
Sf9	Lot 4	93%
	Lot 5	113%

Assay variability 30% CV

No statistically difference between lots, highly similar in-vivo efficacy

A Wholly Owned Subsidiary of Eli Lilly and Company **Comparable efficacy**

In-vivo Cerebral Cortex GCase activity in the CBE Mouse Model

Safety: Sf9 platform shows similar safety profile

CMC Analytics

Test	HEK Process	Sf9 Process
Sterility	No Growth	No Growth
Endotoxin	≤ 0.5 EU/mL	≤ 0.5 EU/mL
Mycoplasma	Not detected	Not Detected
In- vitro Adventitious virus	Not Detected	Not Detected
In-vivo Viral contaminants	NT	Not Detected
rcAAV (Replicative competent AAV)	Not Detected	Not Detected

Toxicology Study in NHPs

"<u>No in-life or clinical or anatomic pathology</u> findings related to the gene product were observed. *Therefore, the dose levels were <u>well-tolerated</u> by male* and female monkeys dosed via intracisternal injection to the cisterna magna."

Summary

- Both Sf9 and HEK293 platforms produced identical capsid proteins with comparable post-translational modifications, biological activity, and strength
- Sf9 platform presented fewer AAV partial viral particles and total DNA residual compared to HEK293 process
- Successfully transitioned clinical program from HEK -> Sf9 platforms

The baculovirus/Sf9 process delivers greater product yield with comparable efficacy and greater purity

Acknowledgments

- Jorge Haller
- Mary Ng
- Stuart Nelson
- Shital Kakkar
- Adnan Arnaout
- Ilan McNamara
- Kaavya Maganti
- David Litwack
- Mansuo Lu Shannon
- Franz Hefti
- Jingmin Zhou, Liz Higgins, Yong Dai, Tim Fenn

