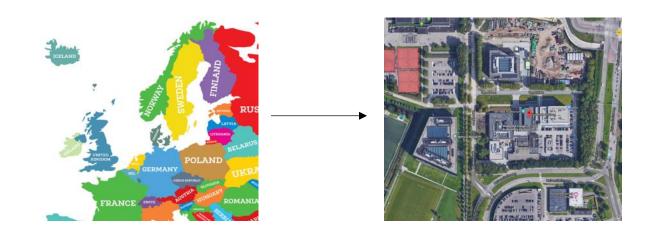
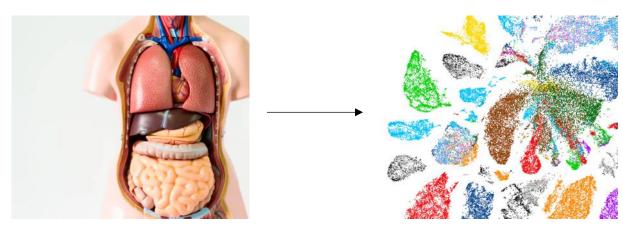


Single-cell sequencing for cell and gene therapy

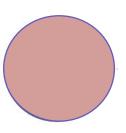

From vector design to product characterization


CGTP EUROPE, OCTOBER 23RD, 2025

MAURO MURARO

CO-FOUNDER & CEO

Single-cell sequencing: biology at true resolution



Classical view

Single-cell view

Why is a single-cell view important?

Single Cell Discoveries supports clients with end-to-end projects

- We've been developing (scRNA-)sequencing methods since
 2012 and supporting clients since 2015
- Team of 35 operating from purpose-built labs and offices of 1200 m² in Utrecht, the Netherlands
- We offer a combination of services & assay development for biotech, pharma, and universities globally.
- Several technologies invented by SCD team and uniquely offered at SCD.
- Fast TaT and high quality

Different biological questions require different solutions

SORT & VASA-seq

FACS & plate-based

- Highly versatile, complex data (12K genes/cell)
- · Total RNA and full length

scRNA seq high throughput

Up to Millions of cells

- 10x Genomics 3' & 5', Flex, CITE-seq, V(D)J
- ScaleBio RNA seq, CRIPSR enrichment kit
- Parsebio Evercode WT

Bulk RNA seq

Ideal for compound screening

- Low input possible
- High-throughput Discovery-Seq
- 3' and full-length RNA

Spatial transcriptomics

Unbiased Whole-Transcriptome Mapping of Tissue Architecture

- 10x Genomics Visium HD
- Integrated single-cell & spatial transcriptomics from the same sample

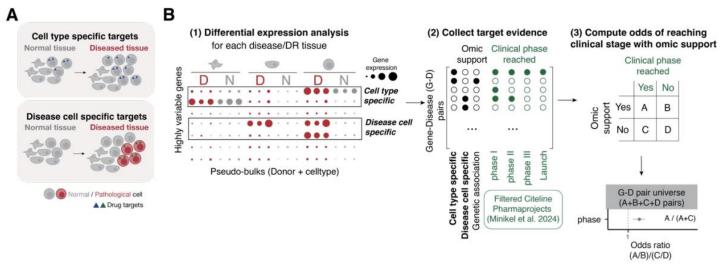
Single-Cell sequencing in drug development

- Target Identification
 - Find new targets by analyzing cell type-specific response to treatment.

- Target Validation & Mechanism of Action
 - By studying drug treatment and dose effects

- Mechanism of Disease & Biomarker Discovery
 - Identify diseased or non-responder cell states

- Lead Identification & Optimization
 - Measure transgene incorporation.


- Preclinical
 - Compare model organisms with patient samples.

- Clinical Trials
 - Stratify responders and non-responders

Single-cell sequencing across the drug development pipeline

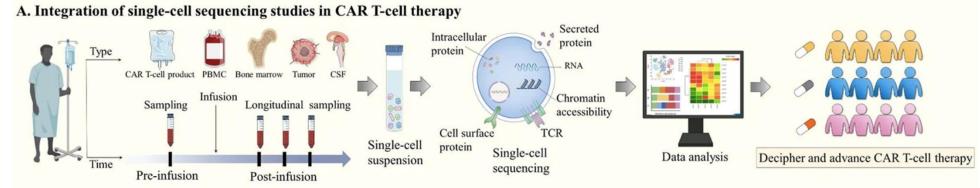
- It has historically been used for target identification, validation.
- Increasing use in biomarker discovery and exploratory clinical trials.
- Has specific use cases in Cell & Gene Therapy.
- Predicted to improve clinical trial success

Better chance to reach Phase III with single-cell data

Single-cell sequencing use cases in CAR-T therapy

A Characterization

- Identify T-cell subtypes
- Quantify CAR heterogeneity
- Reveal mechanisms of potency, persistence, toxicity


Development

- Validate construct and vector design
- Monitor T-cell state evolution during expansion
- Identify predictive efficacy & persistence markers

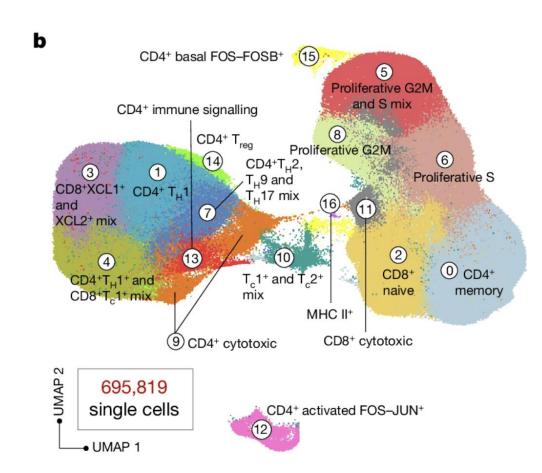
QC & Batch Release

- Assess lot-to-lot consistency & composition
- Detect rare undesired populations
- Build reference single-cell batch fingerprints

Huang et al. Mol Can. 2023

Using scRNA-seq to find predictors of long persistence.

Article


Open access

Single-cell CAR T atlas reveals type 2 function in 8-year leukaemia remission

https://doi.org/10.1038/s41586-024-07762-w
Received: 28 May 2023
Accepted: 27 June 2024
Published online: 25 September 2024

Zhiliang Bai^{1,16}, Bing Feng^{2,3,16}, Susan E. McClory^{4,5}, Beatriz Coutinho de Oliveira⁶, Caroline Diorio^{4,5}, Céline Gregoire⁶, Bo Tao⁷, Luojia Yang⁸, Ziran Zhao⁶, Lei Peng⁸, Giacomo Sferruzza⁸, Liqun Zhou⁸, Xiaolei Zhou^{2,3}, Jessica Kerr⁶, Alev Baysoy¹, Graham Su¹, Mingyu Yang¹, Pablo G. Camara⁸, Sidi Chen⁸, Li Tang^{2,3,5,5}, Carl H. June^{10,11,12,5,5}, J. Joseph Melenhorst^{6,5,5}, Stephan A. Grupp^{4,5,5,5,5}& Rong Fan^{1,71,31,41,15,5,5,5}

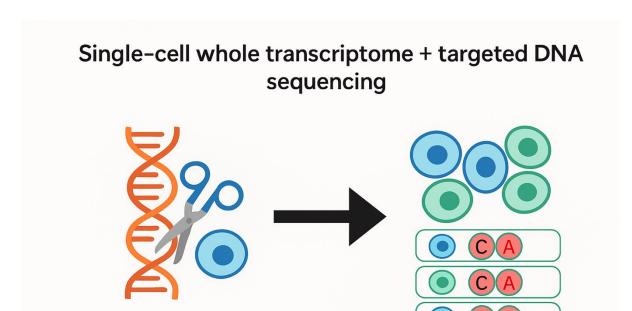
- •Large study of 700K infusion-product CAR-T cells from 82 pediatric ALL patients.
- •Identify functional signature in the infusion product is associated with ultra-long persistence
- •adding IL-4 during manufacturing improved fitness in in-vivo models.

scRNA-seq use cases in Gene Therapy

Vector Design & **Tropism**

- Screen variants for cell-type tropism
- Detect off-target transduction
- Combine RNA + DNA to quantify vector integration and expression

- Map biodistribution across tissues
- Profile immune responses at singlecell resolution
- Detect off-target edits via single-cell DNA/RNA sequencing

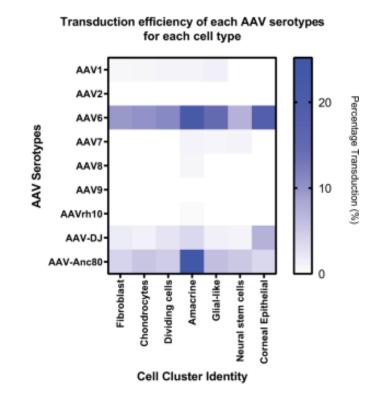

QC & Batch Release

- Link transduction profiles to potency outcomes
- Detect residual producer or offtarget cell types
- Support regulatory comparability and release documentation

Case study 1: Exclude gene editing in germline

- Gene editing tested in mice & NHP
- What is % of affected cells in each cell type?
- Is germline (ovary cells) excluded?
- Custom transcriptome + targeted DNA sequencing to map gene editing events across cell types

Identify gene editing events across different cell types



Case study 2: AAV lead optimization in ocular & brain tissue

In what cell types are AAV transgenes expressed?

- Map viral vectors across cell types in the brain
- Isolate nuclei from frozen rodent & NHP tissue
- Viral barcode + transcriptome from single cells
- Targeted amplification of lowly expressed transgenes

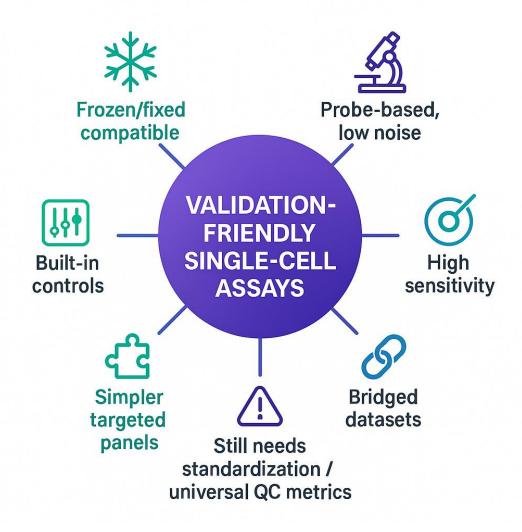
AAV distribution in ocular cells

The challenges using scRNA-seq from a regulatory standpoint

- Zero inflation and dropouts
- Integration of different datasets hard
- High dimensionality: 20 samples =
- 4.8 Billion datapoints!

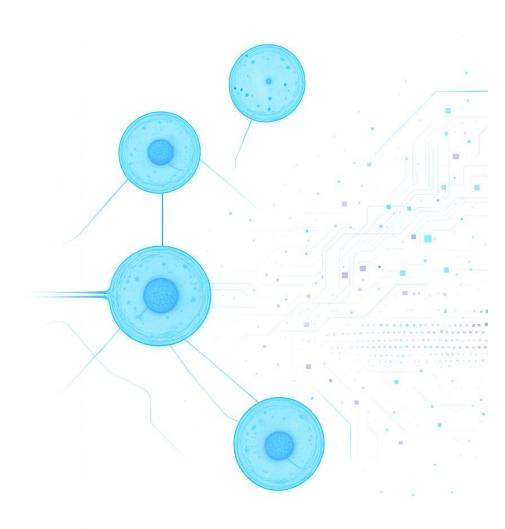
Process

- Cell dissociation / freezing alters profile
- High depth needed for rare events
- Batch effects reduce lot-to-lot comparability


Regulatory & QC gaps

- No accepted, standardized QC
- Reproducibility and audit trails hard
- No standardized analysis pipelines or platforms
- we don't even agree on what a cell type is

	CELL_000001	CELL_000002	CELL_000003	CELL_000004	CELL_000005	CELL_000006
ENSG00000272758	0	0	0	2	0	0
ENSG00000154678	0	0	0	1	0	1
ENSG00000148737	0	0	0	1	3	2
ENSG00000196968	0	0	0	1	2	2
ENSG00000134297	0	0	0	1	1	1
ENSG00000237289	0	1	0	0	0	0
ENSG00000238098	0	0	0	0	1	0
ENSG00000133433	0	0	0	0	0	1
ENSG00000054219	1	0	0	0	0	0
ENSG00000137691	0	3	0	0	0	0


Key developments to make scRNA-seq go beyond discovery & development

Summary & Outlook

- scRNA-seq is a rapidly growing and extremely powerful technology
- Mostly used in discovery & development
- This will change
- Assays are hard to validate & data is complex
- Adaptations are possible (targeted panels, built in controls)
- scRNA-seq will complement existing assays, not replace them.

When to consider scRNA-seq

- When products are variable from batch to batch due to cell type composition.
- When small subpopulations or rare events can cause failure.
- To understand off-target effects.
- When MoA of different treatment outcomes is still unclear

Questions? Reach out!

m.muraro@scdiscoveries.com

Why Work With Us?

Experienced service provider

Sequenced millions of cells & thousands of samples across 40 organisms.

Bespoke solutions

Only CRO dedicated to single-cell and transcriptomics services & methods development.

Trusted Industry Leaders

Core group of scientists working on single-cell sequencing for 10 years.

End-to-end workflow

From experimental design to sequencing and exploratory data analysis, we think along with you to provide solutions to your research questions.

Single-cell experts

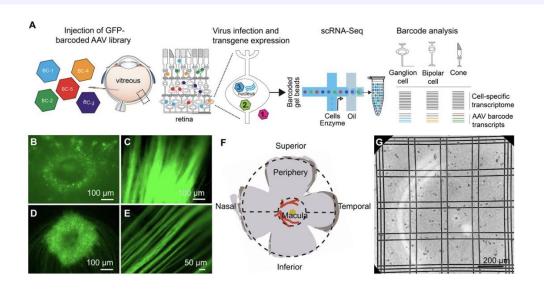
35 PhD/MS-level scientists, 300 publications by our team in scRNA-seq.

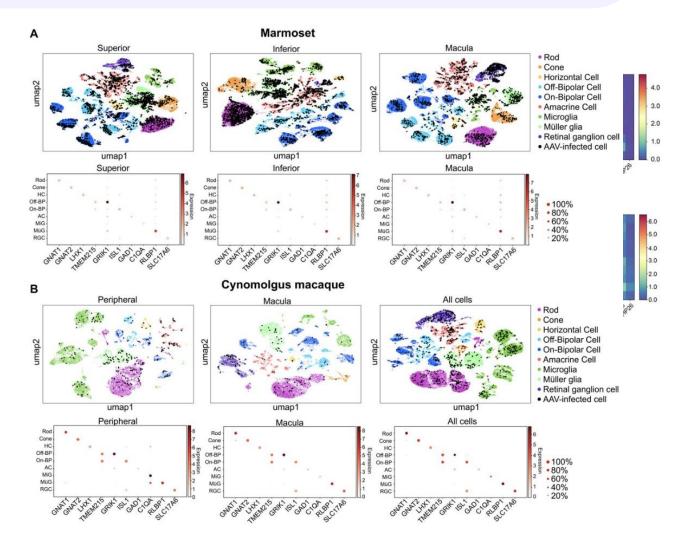
Fit-for-purpose technologies

Proprietary VASA, SORT, Biodistribution, and Discovery-seq solutions. Certified provider for 10x, Parse Bio, Scale Bio and Bioskryb

Data analysis and integrity

Nextflow tower, HPC and AWS integrated pipelines for rapid analysis. Data consulting to support discovery.




Highly accurate and reliable

A quality control environment characterized by meticulous attention to detail and outstanding Q30 and client satisfaction scores.

AAV Capsid design

How our assays work together to speed up your research

Biological question

Profile drug response across treatments

Discovery-seq Bulk RNA-seq

2

Discovery-seq/ RNA-seq to screen hundreds to thousands of conditions

ScRNA-seq high-throughput

3

Analyze dozen samples (100.000 cells/sample)

Data Analysis

4

Clustering analysis to find new cell type / gene signature

Targeted enrichment

5

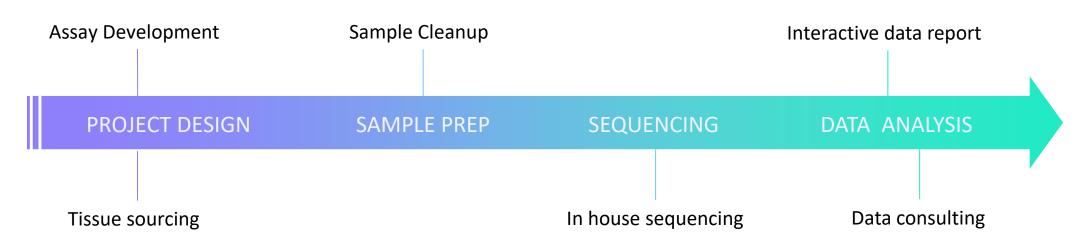
FACS enrichment of cell population or targeted amplification of gene(s) in question

VASA-seq ScRNA-seq

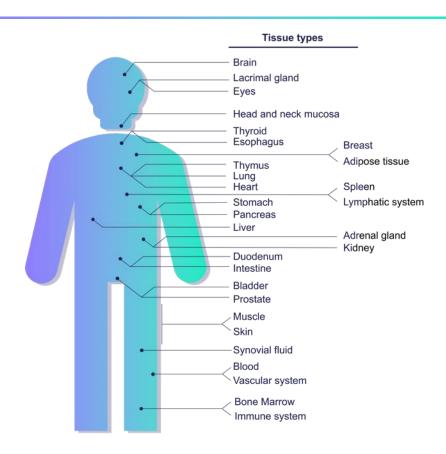
6

Profile subpopulation with VASA-seq to discover new targets and MoA

How we work


Expertise since inception

Tailored innovations


Trusted Partner

Experience with a variety of sample & tissue types

Tissue types

Sample types

- Over 30 tissues & 40 organisms
- Including primary tumors, organoids & brain
- We can work from snap-frozen or fixed cells or tissue

Xenografts	Virus	Primary tissue	Cell cultures	iPSCs
Tumor samples	Cardio myocytes	Organoids	Gastruloids	Single nuclei

