Potency Assurance Strategy - Bridging Theory and Practice

Matthias Heemskerk CASSS

Galápagos

Disclaimers

Views and opinions expressed are personal and belong solely to me and do not represent those of people, institutions or companies that I may or may not be associated with in professional or personal capacity.

The examples presented are for illustrative purposes only and do not represent or imply any claims regarding Galapagos' drug products

We've all heard that in Cell Therapy,

the Process = the Product

the Process + Control strategy = the Product

Potency = Product of the Process + Control strategy

In cell therapy, you don't just test potency, you need to build it into the process

Potency Assurance Strategy

"A comprehensive approach to help ensure that every lot of a product will have the potency necessary to achieve the intended therapeutic effect" FDA

- The FDA's draft guidance, "Potency Assurance for Cellular and Gene Therapy Products," provides a comprehensive framework for developing a robust strategy to ensure the potency of advanced therapeutic products.
- Quality risk management approach and ICH terminology
- Science-based and risk-based framework for discussing potency
- It highlights the importance of potency as a Critical Quality Attribute (CQA)
- It advocates for integrating multiple measures, ranging from process design to validated potency assays, throughout the product lifecycle.

Potency Assurance Strategy

Aspect	Potency Assay Matrix	Potency Assurance Strategy
Definition	A set of assays designed to measure product potency	A comprehensive system to ensure each lot consistently achieves intended potency
Focus	Measurement of product's biological activity	Control and maintenance of potency across the lifecycle
Components	Functional assaysSurrogatesOrthogonal methodsValidated MoA-linked endpoints	 Assay matrix Critical Process Parameter (CPP)/Critical Material Attribute (CMA) control Material quality In-process controls Manufacturing design Risk mitigation
Timing	Built over development, validated by start of Phase 3	Begins preclinical, refined continuously
Goal	Enable product release and consistency testing	Ensure every lot is potent, not just tested as potent
Regulation	ICH Q14, ICH Q2, ICHQ6B, FDA potency guidance, EMA potency guidance	FDA draft guidance on Potency Assurance (2023), ICH Q8/Q9/Q10

In short,

A potency assurance strategy is a multifaceted approach that reduces risks to the potency of a product through manufacturing process design, manufacturing process control, material control, in-process testing, and potency lot release assays.

The goal of a potency assurance strategy is to ensure that every lot of a product released will have the specific ability or capacity to achieve the intended therapeutic effect.

Risk assessment and risk reduction

- Identify what might go wrong during manufacturing to harm potency – assess likelihood and severity of the risks
- 2. If risk is high, reduce risk by improving the manufacturing process and/or the controls

Manufacturing process design

The manufacturing process should be designed to consistently produce a potent product

Control strategy

Potency release assays are just the final check – they are not the entire control strategy

Start with understanding the potencyindicating characteristics of your product

 Define the Quality Target Product Profile (qTPP) and map (proposed) mechanism of action (MoA):

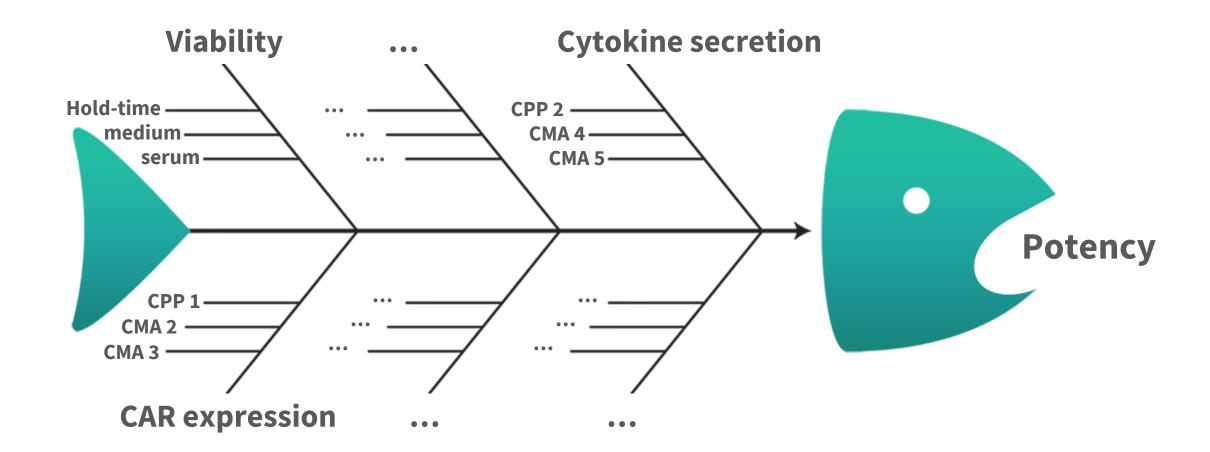
Product type	Clinical Intent (qTPP)	Key MoA Elements	Therapeutic Goal
Autologous CAR T-cells	Eliminate tumor cells in specific patient population	Antigen recognition, T-cell activation, target cell killing	Durable anti-tumor response
Stem cell derived β-cells	Restore glucose-responsive insulin production	Engraftment, glucose responsiveness, insulin secretion	Long term metabolic control

Start with understanding the potencyindicating characteristics of your product

• Identify (potential) Potency-indicating attributes, i.e. direct biological relevance to MoA.

Product type	(p)CQA	MoA relevance
	Viability	Required for cell function
	CAR expression	Antigen recognition
Autologous CAR T-cells	Cytokine release	T cell activation
	Cytolytic activity	Direct potency
	Viability	Required for cell function
Stem cell derived β-cells	GLUT2 expression	Glucose responsiveness
Sterri cett derived p-cetts	Insulin secretion	Direct potency
	•••	

Map (p)CPPs and (p)CMAs across the process


Product type	Process step	Example (p)CPPs	Example (p)CMAs	Linked (p)CQA(s)	
	Starting Material	Hold time	Apheresis cell quality	Viability	
Autologous CART colls	Activation	Activation duration	Activation reagent	CAR expression, Cytokine release, Cytolytic activity	
Autologous CAR T-cells	Expansion	Culture duration, cell density	Activation reagent, Cytokines; media composition	Viability, CAR expression, Cytokine release, Cytolytic activity	
	• • •	• • •	•••	•••	
	Stem Cell Expansion	Passage number; density	Media composition	Viability	
Stem cell derived β- cells	Differentiation	Stage timing, temperature	Growth factors, glucose	GLUT2 expression, insulin secretion	
	Harvest	Dissociation method	Enzyme lot, buffer composition	Viability, GLUT2 expression	
	•••	•••		•••	

Risk Assessment for Potency-Indicating (p)CQAs

Viability, CAR expression, Cytokine release, Cytolytic activity, ...

Product type	(p)CQA	(p)CPP / (p)CMA	Rationale	Severity	Uncertainty	Score	Risk Category
Via		Starting Material	Impacts cellular fitness	4	2	8	Critical
	Viability.	Hold time	Impacts cellular fitness	2	3	6	Major
	Viability	Culture duration	Impacts cellular fitness	3	3	9	Critical
	Cyf	Cytokines	Impacts cellular fitness	3	2	6	Major
CAR T-cells							

Outcome

Control strategy for potency-indicating (p)CQAs

Viability, CAR expression, Cytokine release, Cytolytic activity, ...

(p)CPP /	Risk	Dationalo	(Preliminary) Control strategy			
(p)CMA	Category	Rationale	Control of materials	Manufacturing process design	In-process testing	Lot characterization / release testing
Starting Material	Critical	Impacts cellular fitness				
Hold time	Major	Impacts cellular fitness				
Culture duration	Critical	Impacts cellular fitness				
Cytokines	Major	Impacts cellular fitness				
•••	•••					

Evolution of the potency assurance strategy

Phase 1

			(Preliminary) Control strategy			
(Preliminary) CPP/CMA	Criticality	Rationale	Control of materials	Manufacturing process design	In-process testing	Lot characterization / release testing
			GAP			,

Process design	Clinical-grade process established		
Potency Assay Matrix	Fit-for-purpose assay(s)		
CPP/CMA assesment	Preliminary identification		
PARs	Start gathering data		

Potency Assay Matrix

Product type	Assay	MoA Element Addressed	Phase 1	Phase 2	Phase 3
	Viability testing	General cell function	Release	Release	Release
	CAR expression	Target recognition	Release	Release	Release
Autologous CAR T- cells	Cytokine release	T-cell activation	Exploratory	Supportive	Supportive
	Cytolytic activity	Effector function	Exploratory	Phase- appropriate spec	Tightened spec
	•••				

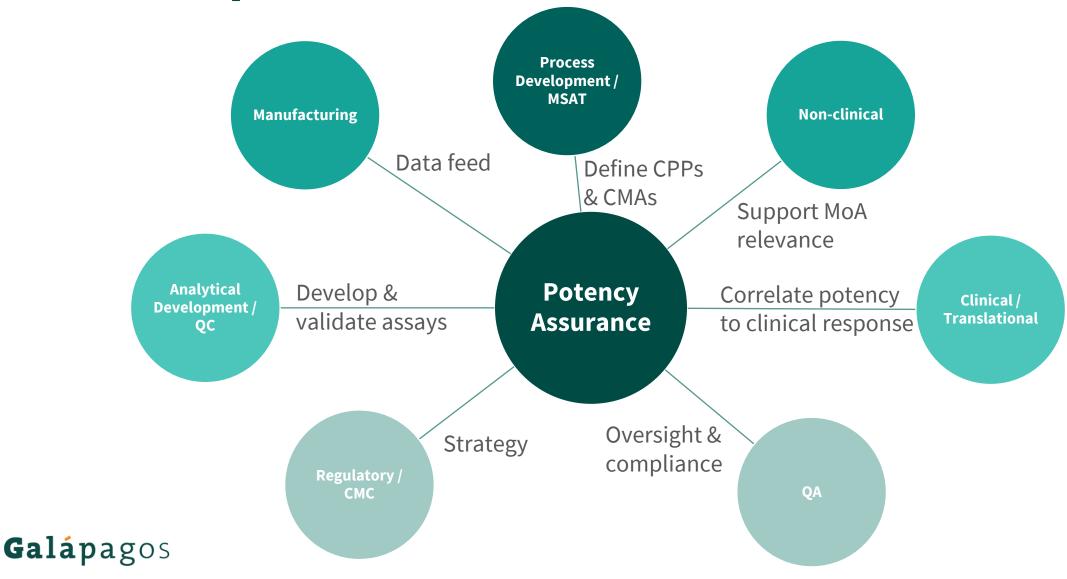
Fit-for-purpose

Qualified

Validated

Recognizing and Overcoming Key Barriers

- Lack of product understanding (MoA, CQAs, CPPs, CMAs)
- No single assay reflects complex MoA
- High product variability
- Assay reproducibility issues



- Siloed teams
- Limited resources / assay dev timelines
- Rapid process evolution vs slow assay readiness

- New concept means little existing experience
- Unclear regulatory expectations for novel products
- Changing guidance / evolving standards
- Bridging early surrogate to validated assays

Potency Assurance Requires Cross-Functional Ownership and Coordination

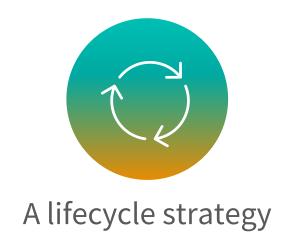
Start Early, Potency Assurance is a Lifecycle Strategy

This means now!

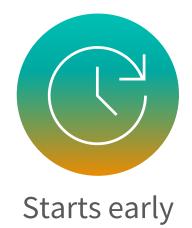
"Before beginning clinical investigations, you should identify initial potencyrelated CQAs for your product, and you should perform a risk assessment and develop a strategy for reducing risks to these CQAs"

My Vision for the Future of Potency Assurance

Potency assured by design, not confirmed by test


Imagine a control strategy where:

- All CPPs are controlled through robust process design or adaptive manufacturing via Process
 Analytical Technology (PAT)
- All CMAs are assured through stringent incoming goods performance testing
- Biological fitness of apheresis starting material is confirmed through functional performance testing


Then, potency testing at release becomes a redundant check?

Take home message

Potency Assurance

