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Advanced Therapeutic Medicinal Products (ATMPs)
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iPSC-derived ATMPs are actively being tested in clinical trials
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The iPSC starting material and final ATMP undergo rigorous safety assessment
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Genomic variants can occur in iPSCs during reprograming and culturing
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Standards for genomic safety assessment are actively being established

* (S.3.1) “Genetic stability should be evaluated for cell preparations that
undergo extensive in vitro manipulation using orthogonal methods. When
relevant, cross reference to tumorigenicity studies in the non-clinical part of
the dossier can be made. “"

 (Recommendation 3.2.2.5) “Culture-acquired genetic abnormalities may be a
significant risk and should be part of in process and/or final product testing for
stem cell products that have undergone extensive expansion in vitro.” 2

Goal: Quantify information from NGS strategies (WGS, WES, RNAseq)
relevant for safety assessment of ATMPs

1. EMA/CAT/22473/2025 2. ISSCR guidelines August 2025 Update | Version 1.2




Next-generation sequencing allows large-scale sequencing of cell products

Sequencing of product
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Genomic risk assessment includes variant calling and interpretation

Sequencing of product

Alignment of sequencing reads to reference genome
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Sequencing methods differ in output
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WGS uniformly covers the entire genome
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Exome sequencing enriches exonic regions through probe hybridization
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RNAseq captures mature mRNAs through poly(A) tail capture
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RNAseq also reveals gene expression patterns that define cell identity
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DNA and RNA-based sequencing reads are aligned with different methodologies

21 iPSC lines
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Alignment of sequencing reads to reference genome

1. Dobin A. et al., Bioinformatics (2013), Li H. and Durbin R., 2. Bioinformatics (2009), (3) Van der Auwera GA & O'Connor BD, Genomics in the Cloud (2020)



NGS displays a high number of low-coverage positions that are excluded
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RNAseq data is enriched in exonic regions compared with ExomeSeq

N
o
o
o

=
o
-
o

100

Avg. covered positions =10 reads
Ul
o

\ |

1e6 intron exon outside gene
58.2%
38.4%
3.4%
62.6%
1
0 50.6%
31.4% - 038'17%
6.0% 4.7%

WGS exomeSeq RNAseq




Exon coverage is similar between RNAseq and exomeSeq
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RNAseq reliably captures more cancer gene exons than exomeSeq
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RNAseq and ExomeSeq cover different coding regions
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Variant calling is performed using the same software

21 iPSC lines
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1. Dobin A. et al., Bioinformatics (2013), Li H. and Durbin R., 2. Bioinformatics (2009), (3) Van der Auwera GA & O'Connor BD, Genomics in the Cloud (2020)



Small variant overlap between genomics and transcriptomics methods
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RNAseq captures 23% of WGS variants, while exomeSeq only 18%
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19% of variants captured using RNAseq are specific to this method
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RNAseq-unique variant positions are covered in WGS but not in exomeSeq
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Over 90% of RNAseq-specific variants are not confirmed by WGS
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RNA editing can be detected by RNAseq, not by DNA-based sequencing methods
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The rate of variation for different base changes is similar among methods
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92% of variants unique to RNA follow RNA editing patterns
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92% of variants unique to RNA follow RNA editing patterns
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Take home messages
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Take home messages « RNAseq has a higher relative focus

on coding regions that exomeSeq
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Take home messages « RNAseq has a higher relative focus

on coding regions that exomeSeq
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Take home messages « RNAseq has a higher relative focus

on coding regions that exomeSeq
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PCR duplicate removal without UMIs
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Extra: Unique Molecular Identifiers (UMIs) tag each sequence in a sample library
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Extra slide: Variant calling using UMIs allows detection of sequencing errors

Variant calling without UMiIs Variant calling with UMIs
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Extra slide: Variant overlap between the three methods
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