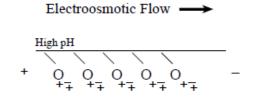

Haofu Huang, Kawaljit Kaur, Jessica Wynn, Cindy Pauley, Ray McClain, Sarah Aubert

Outline


General Introduction of CE
History of Conjugated Vaccine
Limitation of the historical method
Development of the derivatization-based CGE method
Assay qualification
Complex sample matrix screening
Summary

General mechanism of capillary electrophoresis (CE)

- Bare fused silica capillary (or with other coatings)
- Internal diameter: 20 to 200 μm
- · Length usually 25-50 cm
- · Normal polarity means
 - Left: Anode (positive)
 - Right: Cathode (negative)

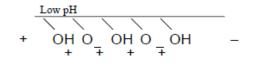
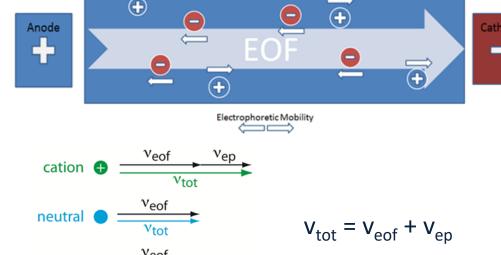
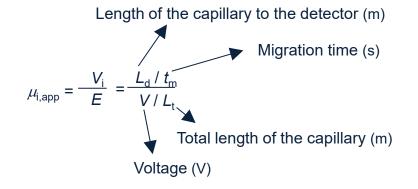
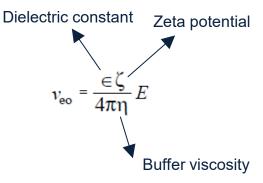
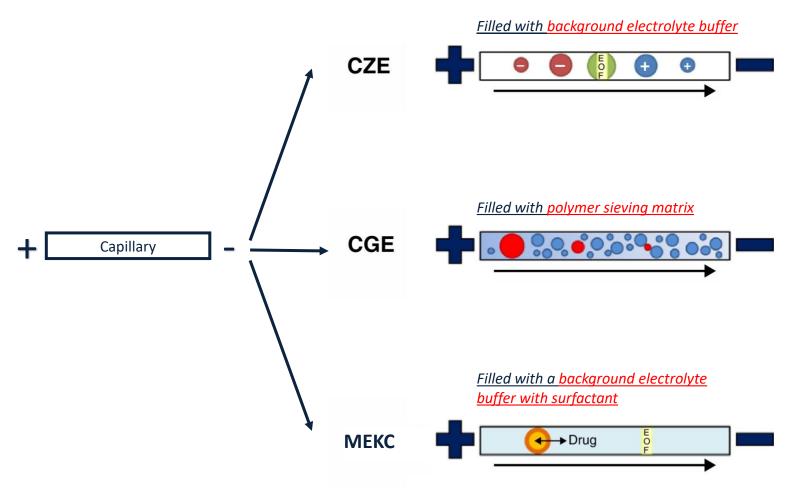





Figure 2. Effect of pH on the Electroosmotic Flow

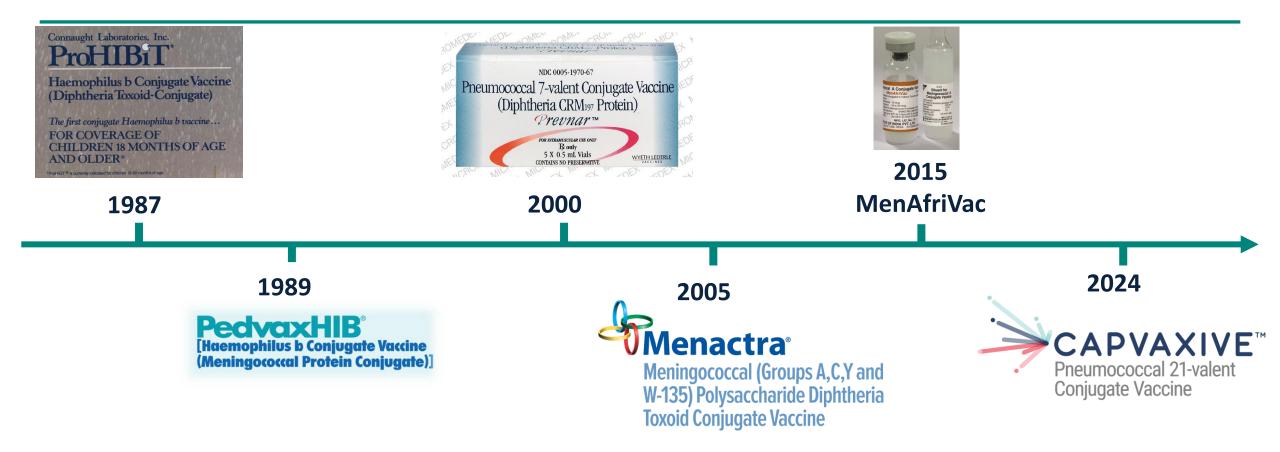
- Electrical double layer
- Liquid gets dragged as cation moves towards cathode
- Robust, fast electroosmotic flow highly dependent on pH of BGE



Main types of Electrophoresis

Separate based on charge to size (friction) ratio

$$\mu \approx \frac{Charge}{Friction}$$

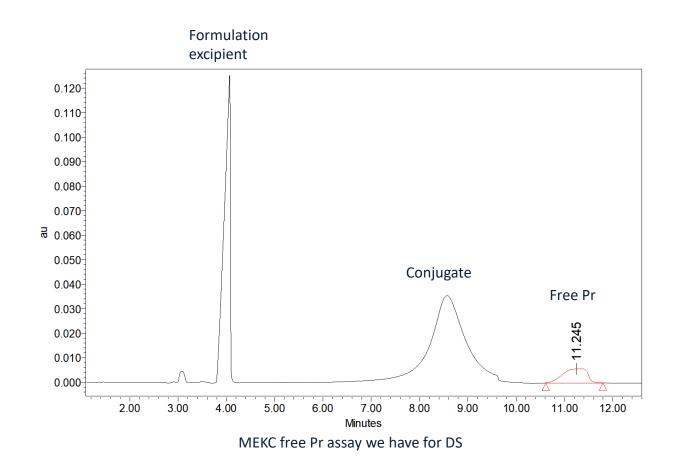

- Small ion quantification K⁺, Na⁺, Mg²⁺
- Large particle (VLP) separations

- Separate solely based on size
- Protein, DNA, RNA separation

- Separate based on the charge to size (friction) ratio and the partition between the analyte and the surfactant micelle
- Neutral species, chiral, protein separation

History of Conjugate Vaccine(s)...

- Weak antigens (polysaccharides) often fail to trigger a sufficient immune response, but conjugation to a highly immunogenic protein carrier enhances their effectiveness.
- This enables T-B cell cooperation, leading to class switching, high-affinity antibodies, and memory B cell formation.
- As a result, infants and young children—whose immune systems respond poorly to polysaccharides—can develop robust and lasting immunity.
- Detection of trace amounts of unconjugated protein remains challenging in complex multivalent vaccine products.


Limitations of the historical method...

MEKC assay for free Pr detection

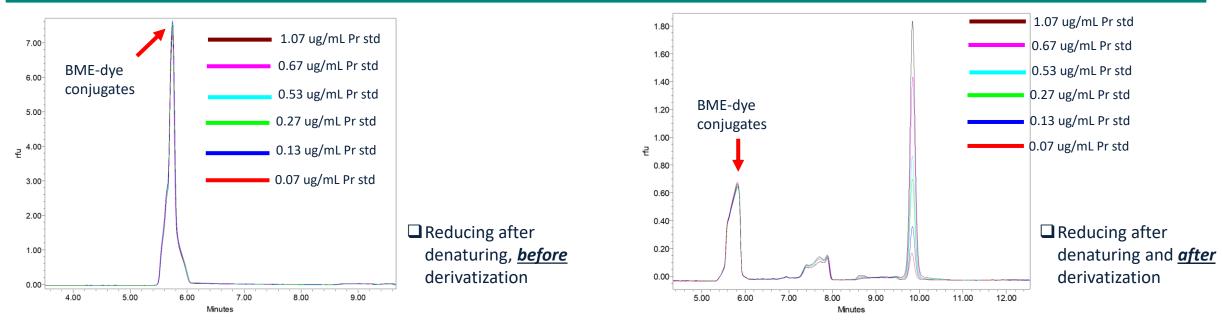
- LOQ: 5ug/mL
- Only for mono-valent sample

New method requirement:

- LOQ at 0.1ug/mL
- Able to evaluate multi-valent sample

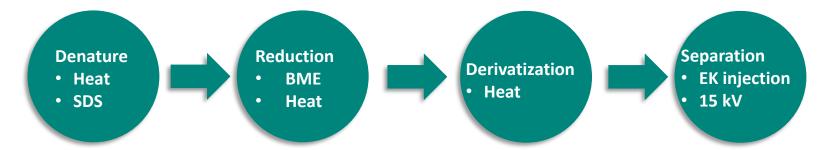
Fluoroprobe choice and Pr labeling strategy

Pr derivatization strategy

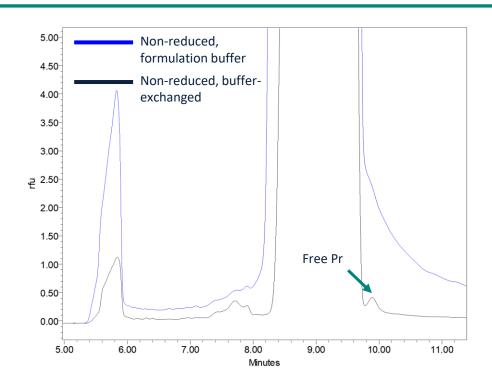

Unreacted amino groups from amino acids

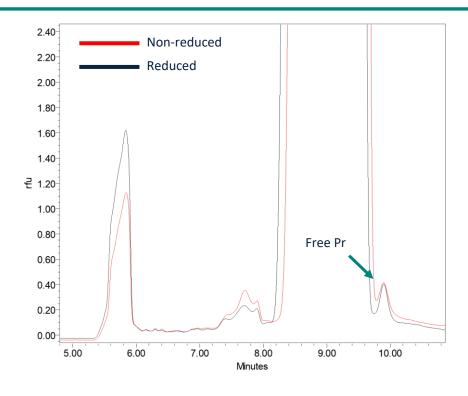
PA800 Laser Induced Fluorescence (LIF) detector

- 488nm laser
- 600nm ± 60nm bandpass filter manually installed

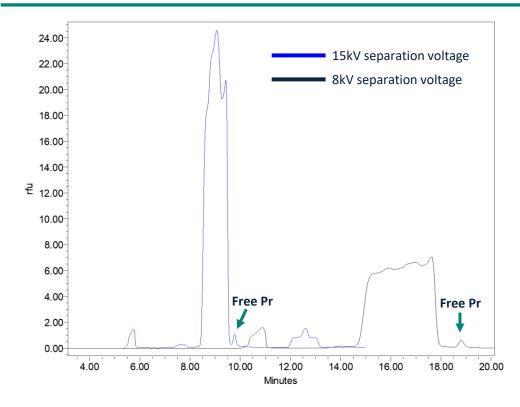

Dye	Structure	Excitation/Emission	Mw
ATTO-TAG dye	CH CH CH	480/600	305.3

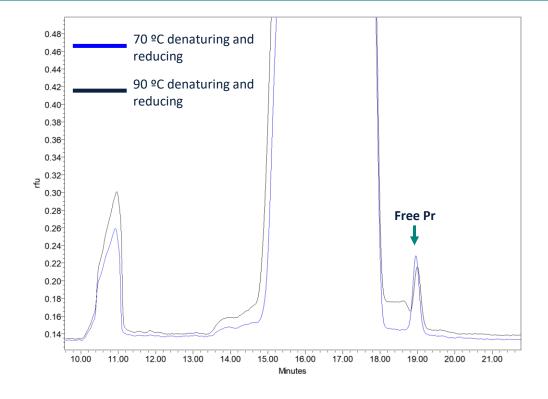
Where we started...


Initial conditions tested for pure Pr (PA800):


- Non-reduced;
- Reduction after denaturing and derivatization to avoid BME interference with dye;
- Conditions tested:

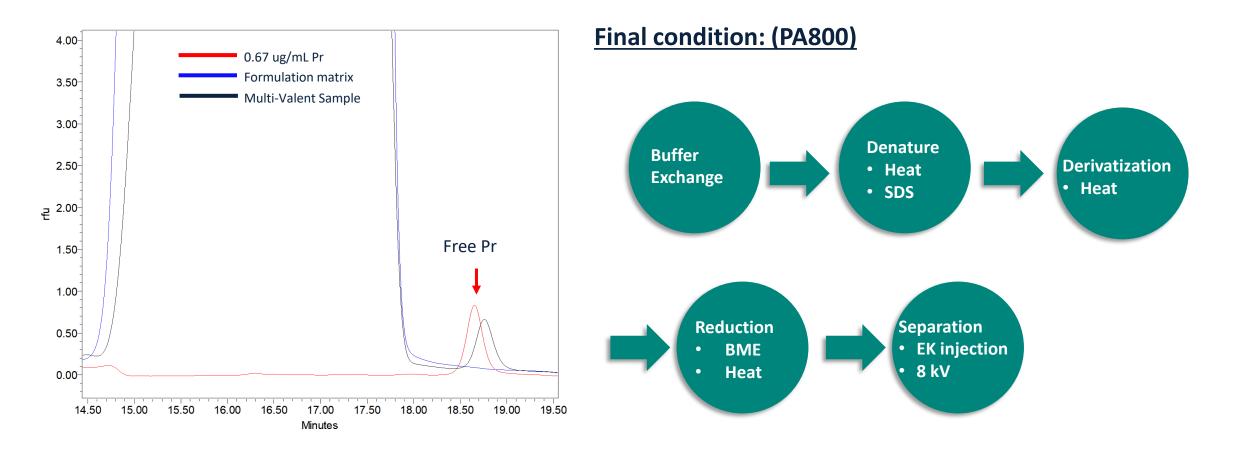
Conditions screened...




Conditions tested:

- Buffer-exchanged vs non-buffer-exchanged (Formulation buffer)
 - Buffer exchange required for removing the interference from the sample matrix
- Reduced vs non-reduced
 - Reducing condition using BME increases the resolution between the free Pr and the sample matrix peak

Conditions screened – cont'd...



Conditions tested:

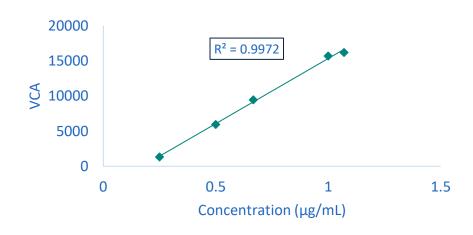
- 8kV vs 15kV separation voltage
 - Increased resolution at 8kV with limited increase in separation time
- Reducing and denaturing temperatures
 - Lower resolution in 90 °C compared to 70 °C

Final condition confirmed on CE-SDS



Assay Qualification

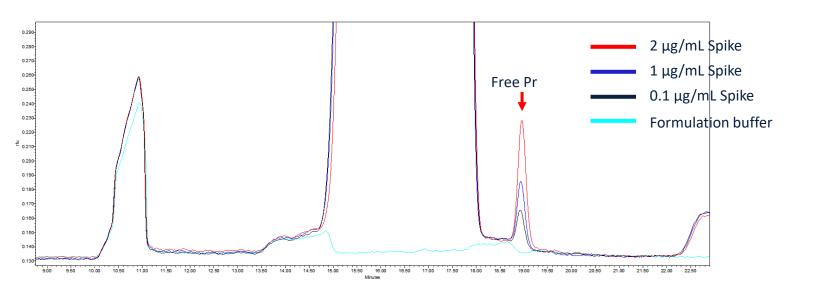
Pure Pr linearity and sample dilutional linearity


CALIBRATION CURVE

Pure Pr standard linearity

- Pure Pr diluted at 6 levels
- Range: 0.07 1.07 ug/mL
- $R^2 = 1.000$

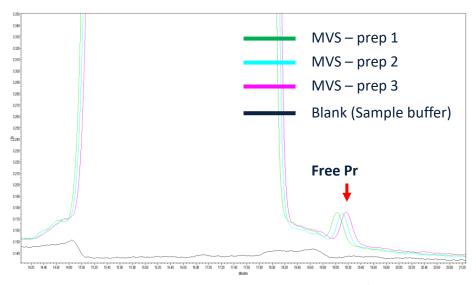
DILUTIONAL LINEARITY


Multi-valent sample dilutional linearity

- Multi-Valent sample diluted at 5 levels
- Range: 25% formulated concentration (4x dilution) 107% formulated concentration
- $R^2 = 0.997$

Accuracy

	Target (Theoretical) Spike Concentration (μg/mL)	Measured Free Pr concentration (μg/mL)	%recovery
0.1 μg/mL Spike	0.10	0.09	90%
1 μg/mL Spike	1.00	0.92	92%
2 μg/mL Spike	2.00	2.03	102%


- Pure Pr was spiked into a control sample with an endogenous level of free Pr.
- Low/Med/High spike points were evaluated (0.1μg/mL/ 1μg/mL/ 2μg/mL)
- $% Recovery = \frac{Spiked\ Sample\ -\ Control\ Sample}{Theoretical\ Free\ Pr\ Spiked\ concentration} \times 100$
- 90-102% spiking recovery at the specific region with no interference from the formulation buffer, indicating good specificity.

Repeatability and analyst variability

	Sample Name	Measured Free Pr concentration (μg/mL)	Average		Repeatability %RSD	Intermediate %RSD			
	MVS – prep 1	0.52	0.54						
Analyst 1	MVS – prep 2	0.53		0.57	2.6%	C 00/			
	MVS – prep 3	0.56							
	MVS – prep 1	0.61		0.57		6.0%			
Analyst 2	MVS – prep 2	0.60	0.60	0.60		1.5%			
	MVS – prep 3	0.59							

- Multi-Valent Sample (MVS) was prepared three times and injected separately
- Both repeatability %RSD and analyst variability %RSD were evaluated and are both <10%
- Sample buffer matrix was derivatized and injected, no signal was observed at the position of interest

Derivatized sample stability over time

Reaction stability 1 0.9 0.8 0.7 0.6 0.6 0.4 0.3 0.2 0.1 0

Time (min)

1400

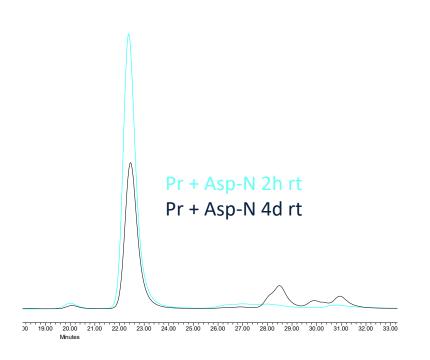
1800

2000

200

600

- Multi-Valent Sample (MVS) was injected one hour after the derivatization
- Same MVS was then repeatedly injected until 30 hours
- The average amount of free Pr is 0.56 ± 0.03 within 30 hours
- Derivatization is stable for at least 30 hours with a 5.4% concentration fluctuation


Assay qualification result

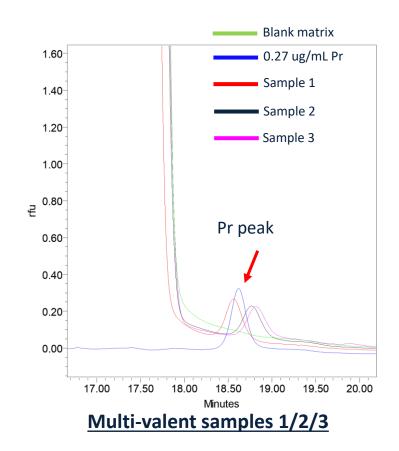
	Target Method Performance	Results
Linearity	The reference standard curve, R ² ≥ 0.980	$R^2 = 1.000$
Dilutional Linearity	The plot of peak area (of diluted samples) vs 1/dilution factor, $R^2 \ge 0.970$	$R^2 = 0.997$
Accuracy	50% - 200% at each level	90 – 102%
Precision	Intra-run precision, ≤ 30% RSD	2.6% RSD
Intermediate Precision	Intermediate precision must be ≤ 40% RSD.	Intermediate precision is RSD <10%.
Specificity	No peaks present in the placebo sample electropherograms that are greater than or equal to the lowest calibration standard of 0.10 μg/mL	Specificity is confirmed based on the absence of peaks in the placebo sample electropherogram, and also through the 90%-102% spiking recovery.
Range	The range of the assay will be determined from precision, accuracy and linearity results.	0.10 μg/mL – 1.07 μg/mL
Limit of Quantitation (LOQ)	The LOQ must meet the acceptance criteria for linearity, accuracy and precision.	0.10 μg/mL
Derivatization Stability	N/A	Stable for at least 30 hours

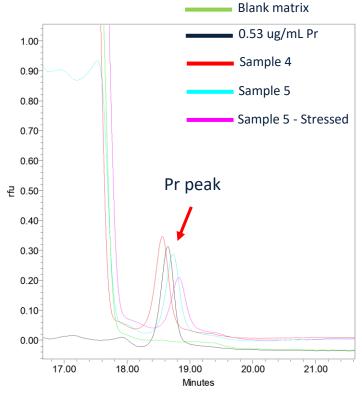
Enzymatic Degradation w/ Asp-N

Enzymatic conditions Asp-N (~ 24.5 kDa)

- Enzymatic digestion (Asp-N) is another option as observed degradant peaks w/ SEC
- Slow degradation at rt using recommended enzyme conc and Asp-N:Pr ratios (0.04 ug/uL, ~1:200)

	Theoretical conc- (mg/mL)		-FLD	CE-SDS	
Sample		Exp conc (mg/mL)	% control	Exp conc (mg/mL)	% control
Pure Pr	0.89	0.90	N/A	0.89	N/A
Pure Pr + Asp-N T=2.5d, rt	N/A	0.79	89%	0.77	86%


Trending:


 SEC-FLD and CE-SDS methods reveal similar % loss of Pr in degradation sample relative to control

Absolute values (accuracy):

- SEC-FLD agrees with CE-SDS on the free Pr degradation degree
- rCE-SDS is able to detect degradation of free Pr (Only if the decreasing amount is higher than the intermediate %RSD)

Complex multi-valent samples screening...

	Free Pr conc (ug/mL)
Sample 1	0.57
Sample 2	0.45
Sample 3	0.42
Sample 4	1.75
Sample 5	1.70
Sample 5 – Stressed	1.15

Multi-valent samples (4 and 5)

- Successfully quantify the amount of free Pr at ng/mL level in various multi-valent samples.
- Assay is able to detect the stability change upon stressed condition.

Summary

•Key Features:

- Derivatization with ATTO-TAG FQ dye for enhanced sensitivity (LOQ 0.10 μg/mL)
- Capillary Gel Electrophoresis (CGE) separation optimized for complex samples
- Suitable for multi-valent drug formulations

•Performance Highlights:

- Excellent linearity (R² > 0.999) and accuracy (90–102% recovery)
- High precision (%RSD <10%) and specificity (no placebo interference)
- Stability of derivatized samples confirmed for 30+ hours
- Detects protein degradation

•Impact:

Enables characterization of the free Pr in the conjugate vaccines with improved sensitivity and applicability over previous assays.

