

Rapid Analysis of Oligonucleotides by High-Resolution Accurate Mass CE-MS

Dr. Daniel M. Waldera-Lupa | Laboratory Manager daniel.waldera-lupa@protagene.com

20th September 2022

1111111111 111111111 ///////////// //////// //////// ////////

Oligonucleotides

- Synthesized short DNA or RNA molecules (single or double stranded)
- Wide range of applications in molecular biology, biotechnology and therapy
- Oligonucleotides usually contain 10 to 30 nucleotides
- Classification of oligonucleotides:
 - Antisense oligonucleotides (ASOs)
 - Short interfering RNA (siRNA)
 - MicroRNA (miRNA)
 - Aptamers
 - CpG oligonucleotides

 $\left| \right\rangle$

Odeh, F.; Nsairat, H.; Alshaer, W.; Ismail, M.A.; Esawi, E.; Qaqish, B.; Bawab, A.A.; Ismail, S.I. Aptamers Chemistry: Chemical Modifications and Conjugation Strategies. *Molecules* **2020**, *25*, 3. https://doi.org/10.3390/molecules25010003

~⁰⁻

Oligonucleotide Therapeutics

- Direct therapeutics against a variety of diseases:
 - Oncology, infectious diseases, metabolic disorders, genetic disorders, etc.
- Fifteen oligonucleotide therapeutics have been approved since 1998
 - The majority in the last five years
 - Many more are in development
- ASOs
 - ~18-30 nt, single stranded
 - Degradation of mRNA, suppression of transcription, inhibition of translation
- siRNA
 - ~19-23 nt, RNA duplex
 - Inhibition of translation, degradation of mRNA

Leavitt, B; Tabrizi, S. Antisense oligonucleotides for neurodegeneration, *Science* **2020**, 367 (6485), 1428-1429. DOI: 10.1126/science.aba4624

http://www.uni-konstanz.de/FuF/chemie/jhartig/

Quality Control

- Confirmation of oligonucleotide mass and sequence
- Quantification of purity level
- Product- and process-related impurities determination and quantification:
 - Addition sequences (longmers, n+1)
 - Deletion sequences (shortmers, n-1, most common)
 - Phosphodiester analogs
 - Depurinated sequences
 - Modifications

Goyon, A; Yehl, P; Zhang, K. Characterization of therapeutic oligonucleotides by liquid chromatography. *Journal of Pharmaceutical and Biomedical Analysis* **2020**, 182, https://doi.org/10.1016/j.jpba.2020.113105

Capillary Electrophoresis using ZipChip®

- Capillary Zone Electrophoresis (CZE) separation
- Electrophoretic mobility (function of the charge-to-size ratio)
- Separation on a High-Resolution Bare Glass chip
- No ion-pairing agents required
- Low sample amounts needed (injection of 1 nL)
- Fast analysis (<10 min)

The ZipChip®

- Single piece of glass
- Microfluidic channels by photolithography and wet chemical etching
- Three major functional elements:
 - sample injection
 - electrophoretic separation
 - electrospray ionization

Tech Note 1.0 ZiChip What they are and how they work. 908devices

CE Separation of Oligonucleotides using ZipChip®

- Following the sample injection, voltage is applied to the BGE channels
- These voltages dictate the electrical field strength for the CE separation and the ESI voltage
- Analytes migrate down the separation channel in the electric field toward the ESI emitter
- Negatively charged oligonucleotides are carried to emitter with EOF

Tech Note 1.0 ZiChip What they are and how they work. 908devices

Capillary Electrophoresis Mass Spectrometry (CE-MS)

- Direct coupling to the mass spectrometer
 - Positive ESI mode
 - Stable nano-spray with high sensitivity
 - High-resolution accurate mass (HRAM) (60k resolution)
- Data evaluation with BYOS[®] Oligos
 - Identification (via MS/MS)
 - Quantification (peak integration)

https://www.thermofisher.com/order/catalog/product/de/de/00950-01-00494

CE-MS of Oligonucleotides Method Development

Separation of Oligonucleotides by CE-MS

- DNA oligo length standard 10/60 Ladder (ssDNA, Integrated DNA Technologies)
- HRAM CE-MS analysis in a single-shot experiment
- The migration order ranged from low to high molecular weight, with the exception of the 10mer
- Correlating with the molarity, the 10mer showed the highest intensity

High-Resolution Mass Spectra

- One to two charge states per oligonucleotide
- [M+3H]³⁺ to [M+7H]⁷⁺ species were the dominant charge states
- Isotope-resolved mass spectra
- Monoisotopic masses

2199

 Alkali-metal ion adducts such as sodium and potassium were detected

Benefits of HRAM-MS

- HRAM-MS led to high specificity and a low mass deviation
- Unambiguous assignment of MW based on monoisotopic mass
- Quantification with high sensitivity by extracted ion electropherogram (EIE)
 - Most abundant charge state
 - Highest abundant isotope

Quantification of Oligonucleotides

- Dilution series from 0.02 pg (1.1-6.6 nM) to 20 pg (1.1-6.6 μM)
- The quantification was linear over several orders of magnitude

Limit of Quantification

- LOQ within the low nM range
- Not reached for smaller oligonucleotides (10-30mer)
- CE-MS showed a high sensitivity

Oligonucleotide Length	Molecular Weight [Da]	Absolute amount [pg]	Concentration [nM]
10	3,043	<0.02	<6.49
15	4,634	<0.02	<4.32
20	6,117	<0.02	<3.27
25	7,642	<0.02	<2.62
30	9,191	<0.02	<2.12
40	12,274	0.05	4.07
50	15,379	0.20	13.00

CE-MS Analysis of Synthesized Oligonucleotides

- Two individually synthesized 10mers (not purified) were measured
- Data evaluation with BYOS[®] Oligos
- The 10mers showed baseline separation
- Multiple impurities were detected

Name	Sequence	Molecular Weight [Da]
10mer,A	CAAAGCGACG	3,046
10mer,B	GATCCAGACC	2,997

Sequence Confirmation by MS/MS

- The oligonucleotides were identified based on precursor mass and high quality MS/MS spectra
- High ion series coverage was achieved

Identification and Quantification of Impurities

CE-MS Analysis of Semi-Complex Mixtures

Total Ion Electropherogram

- Five oligonucleotides of same length and similar mass were analyzed
- A good separation was achieved

1.200e+00

1.000e+00

8.000e-01

6.000e-01

4.000e-01

Intensity

• Isobaric compounds can be separated

		•		
nd similar	Name	Sequence	Molecular Weight [Da]	Peak
	10mer, A	CAAAGCGACG	3,046	4
	10mer, A shuffled	GCCACGAAGA	3,046	5
	10mer+methyl, A	GAC [5MedC] AATCCG	3,012	1
	10mer, B	GATCCAGACC	2,997	3
	10mer,rev. comp., B	GGTCTGGATC	3,059	2
1 - 10mer+methyl,A , 2 - 10n	Reference 4 - 10mer, 3 - 10mer, B, Reference her, rev, B, Reference	A , Reference 5 - 10mer,A, shuffeld	, Reference	

5.2

2.000e-01 0.000e+00 4.6 4.8 Minutes 5

5.4

Sequencing of Longer Oligonucleotides

Conclusions

- CE-MS is a suitable tool for rapid analysis of oligonucleotides in quality control:
 - CZE separation using a ZipChip[®] device
 - Fast analysis (<10 min)
 - Low sample amounts needed
 - No ion-pairing agents required
 - Isobaric compounds can be separated
 - High-resolution accurate mass leads to high specificity
 - The quantification is linear over several orders of magnitude
 - High sensitivity (LOQ in the low nM range)
- Identification is easily achievable with BYOS[®] Oligos:
 - Molecular weight verification with accurate mass
 - Sequence verification via high quality MS/MS spectra
 - Fast and easy impurity analysis including identification and quantification

Acknowledgements

ProtaGene

- Anne Oltmanns
- Melissa Motzkau
- Yvonne Jasper
- Heiner Falkenberg

×908 devices

- Simon Krabbe
- Silvio Keckes
- Kate Yu
- Gary Paul

- Sabine Springer
- Lucy Fernandes

Thank You

ProtaGene.com contact@protagene.com Europe ProtaGene GmbH Inselwiesenstraße 10 74076 Heilbronn Germany Phone: +49 7131 74504-0 North America ProtaGene US, Inc 790 Memorial Drive Cambridge, MA 02139 USA Phone: +1 857-829-3200 Europe ProtaGene CGT GmbH Im Neuenheimer Feld 582 D-69120 Heidelberg Germany Phone: +49 6221 42790-0

Europe ProtaGene GmbH Otto-Hahn-Straße 15 44227 Dortmund Germany Phone: +49 231 9742-6100

