

Development of an SDS-CGE method for purity determination of acellular *Bordetella pertussis* vaccines

Elena Newman¹, Judie Shang², Michael Leach³

¹Quality Control - Chemistry, Sanofi, Toronto, Canada ²Eurofins Professional Scientific Services (PSS) Insourcing Solutions, Toronto, Canada ³Analytical Sciences - Biochemistry, Sanofi, Toronto, Canada

Overview

Objective:

Development of an SDS-CGE method for purity determination of acellular component Bordetella pertussis drug substances (DS)

- Current QC release assay for DS component pertussis (cP) purity: SDS-PAGE with densitometry
 - Six matrices (manufactured from cell-derived process):
 - Pre-adsorbed Fimbriae 2/3 (FIM) release
 - Pre-adsorbed Pertactin (PRN) release
 - Pre-adsorbed Pertussis Toxin (PT) release
 - Pre-adsorbed Filamentous Hemagglutinin (FHA) release
 - Adsorbed Fimbriae 2/3 (FIM-ads) stability monitoring
 - Adsorbed Pertactin (PRN-ads) stability monitoring

Capillary Gel Electrophoresis (CGE) for Purity Determination

- Analytical Target:
 - Sensitivity: 1% impurity detection
 - Resolution: baseline separation of antigen peaks
 - Unified method: suitable for all four antigens
- **Method parameters already established:** antigen precipitation with TCA, instrument parameters, sample preparation
- Method parameters to be evaluated:
 - Optimization of method for antigen-specific challenges reducing agent optimization, identification of unknown peaks, resolution optimization, low peak area
 - Resolution stress and assay validity criteria
 - Method robustness
 - Validation execution

Trichloroacetic Acid (TCA) Precipitation

- TCA precipitation: prevent matrix effects, concentrate samples
- Corrected peak area (CPA) of antigen peaks not significantly different with TCA precipitation
- Mock impurity with antigens spiked with BSA or lysozyme: mock impurity recovery is not significantly different with and without TCA precipitation

Fimbriae 2/3 (FIM)

- **Fimbriae:** hair-like, appendages extending from bacterial surface for motility, adhesion, conjugation, intercellular interactions, DNA uptake, and biofilm formation
- Two serologically distinct but similar structures that are co-purified, both a-helical known to form oligomers by dynamic light scattering (DLS)

FIM 2 Structure

Source: AlphaFold (P05788)

Specific challenge: Complete reduction of disulfide bonds

Fimbriae 2/3 (FIM) – Reducing Agent Selection

- Tris(2-carboxyethyl)phosphine (TCEP): aim to replace β-mercaptoethanol as reducing agent with a preferred health & safety alternative
 - Recovery loss observed with TCEP with lower total electropherogram CPA by up to 49%
 - Appearance of FIM shoulders incomplete reduction, instability throughout sequence
- **Decision:** Use of TCEP not feasible as reducing agent for this workflow

Pertactin (PRN)

 Pertactin: outer membrane protein responsible for epithelial adhesion, 16-stranded parallel βhelix

- Presence of LMW group and HMW shoulder in addition to PRN main peak
- SEC-HPLC confirms presence of LMW group
- Specific challenge: Identification of product-related LMW and HMW peaks

Pertactin (PRN) Peak Identification – LMW Group

- PRN LMW group present in electropherogram and MW matches with SDS-PAGE gel
- Mass spectrometry analysis of gel digest band from SDS-PAGE revealed product-related substance (truncate)
 - Decision: LMW group is included in purity value to be consistent with current SDS-PAGE purity release method

Pertactin (PRN) Peak Identification – HMW Group

- Ion mobility spectrometry (IMS): this workflow was used to measure collisional crosssectional area in gas phase to determine different conformational states of same MW
 - Major and minor conformational species corresponding to main peak and HMW respectively
- SDS-CGE: May adopt folded or partially denatured state even in presence of detergent, core may remain undenatured
- **Decision:** HMW shoulder to be included in purity value (consistent with current SDS-PAGE purity release method)

Emsley, P et al. (1996). Nature.

Pertussis Toxin (PT)

 Hexamer – five subunits (two S4 subunits per hexamer), intermolecular disulfide bonds, subunits on electropherogram assigned based on MW

- Specific challenges:
 - Identification of the impurity peaks and S2 HMW shoulder
 - Improve peak resolution

sanofi 🎲 eurofins

Stein, PE et al. (1994). Cell.

Pertussis Toxin (PT) – Impurity Peak Identification by Intact Mass LC-MS

Polyphenyl Column with Q-TOF) performed on full sample

- Impurity peak baseline resolved from PT S1 consistently detected at the same relative quantity as in SDS-CGE, MW matches to FIM3 (decision to treat as impurity)
- 2. PT S2 shoulder identified as oxidized S1 and FIM2 neither shoulder aligns with FIM2, LMW S1 shoulder increases in MW upon H_2O_2 incubation with oxidized S1 observed in LC-MS at ~2-7% abundance (decision to include in purity value)

Pertussis Toxin (PT) – Baseline Separation of Subunits

• Parameters assessed to improve resolution and potentially achieve baseline separation of peaks:

Parameter	Range Assessed	Condition Providing Optimal Resolution
Aperture	200-800 µm	200 µm
Separation Voltage	10-15 kV	15 kV
β-mercaptoethanol (BME) Concentration	0-5% v/v	2% v/v
Mode of Injection	Hydrodynamic vs. Electrokinetic Injection	Electrokinetic Injection

Filamentous Hemagglutinin (FHA)

- **FHA:** cell surface protein, functions as an adhesin
- Most difficult antigen for method development
- Specific challenges:
 - Low total CPA compared to other antigens (due to lower content of aromatic amino acids)
 - Peak identification
 - Joule heating (long separation time) results in baseline instability, inconsistent peak integration

Filamentous Hemagglutinin (FHA) – Recovery

- **Aim:** Demonstrate appropriate FHA recovery despite CPA being lower
- Attempted to increase FHA signal at 214 nm (buffer exchange, detergent addition, increase SDS, increase precipitation, longer chain detergents injection mode)
- FHA loaded at target load and LOD consistently detects impurities with <0.3% variability
- Decision: modelling demonstrates appropriate recovery is achieved despite low apparent CPA

sanofi 🍪 eurofins

Concentration (mol/L) x TCA precipitation Recovery (%) x Total Purity (%)

14

Filamentous Hemagglutinin (FHA) – Peak Identification

1. FIM 2/3 detection? FIM 3 detected, not FIM 2

٠

- Identity of 98 kDa impurity peak (also observed on SDS-PAGE)? HCP (multiple candidate proteins in MW range)
- Explanation for 2 FHA peaks. Differential truncation/maturation, or could be due to two Fha proteins (FhaS and FhaL)
 Sonofi & eurofins

Filamentous Hemagglutinin (FHA) – Joule Heating

- Peaks in 23-28 min region are antigen product-related truncate peaks and included in purity value
- Joule heating of SDS gel buffer baseline instability, inconsistent peak integration of truncates
- **Decision:** Use manual integration for appropriate integration of truncate peaks

Assay Validity Criteria and Resolution Stress

Stress	Sep. Volt. (kV)	Cap. Temp. (°C)	Suitability Observations	Suitable?	35 kDa Res. Factor (USP)
1	20	40	Lower resolution, baseline instability	No	7.4
Poor Capillary	15	25	LOD not detected	No	7.7
2	18	30	PT purity 0.04% different from target	Yes	8.8
3	17	28	PT purity 0.03% different from target	Yes	8.6
Target	15	25	N/Ap	Yes	8.7-10.0
4	14	23	PT purity 0.3% different from target	Yes	9.8
5	12	17	PRN LMW peaks (included in purity) below LOD		11.4
6	10	15	Wider peaks, PRN and FHA not visible on egram No		12.0

- Assay validity criteria to be set based on USP Resolution of 35 kDa peak
- 32 Independent replicates of MWM also fall within range
- Set USP resolution to: 7.7-11.4

Robustness Assessment of Optimized Method

sanofi 🍪 eurofins

Instrument Parameters

PDA Detector (detection at 214 nm) Uncoated capillary (30.2 cm) Electrokinetic injection (5.0 kV, 30 sec) Aperture 200 µm Separation 15.0 kV, 30 min 25°C capillary temperature

20°C sample storage

- Robustness assessment for all antigens:
 - BME: 1.75-2.25%
 - Heat temperature: 97-103°C
 - Heat time: 4-6 min
- No statistically significant effect for any of the parameters assessed for robustness

Method Validation Design

sanofi 🎲 eurofins

Target Level Purity		Analyst/Day (# of Determinations)		
Decrease (%)		Run 1 A1D1	Run 2 A1D2	Run 3 A2D3
0	1 (neat)	3	3	3
4	2	1	1	1
8	3	3	3	3
12	4	1	1	1
16	5	1	1	1
20	6 (<spec)< td=""><td>3</td><td>3</td><td>3</td></spec)<>	3	3	3
Total determinations per day		12	12	12

 Validation parameters: precision (intermediate and repeatability),
linearity, accuracy, range, specificity, LOQ

- Validation executed with most complex matrix for each antigen:
 - FIM (adsorbed)
 - FHA (pre-adsorbed)
 - PRN (adsorbed)
 - PT (pre-adsorbed)
- Spiked with BSA or β-galactosidase to mock impurity
- Six levels level 6 selected to be below specification for all antigens

Spike Normalization Factor

- For method validation, linearity and accuracy assessment requires different 'levels' to force reportable value lower than the neat purity
 - Spiked levels created with mock impurity BSA or β-galactosidase
 - Extinction coefficient different between antigens – levels not simply created based on %w/w value
 - Normalization based on extinction coefficient to meet target purity decrease

sanofi 🎲 eurofins

BSA

β-gal

PT

FHA

2.18

0.40

Method Validation Results Summary

μī

PRN

- Aim: Demonstrate method suitability for replacement of SDS-PAGE as release test
- Accuracy and precision assessed across 3 levels
- Dose linearity: Purity vs. spike amount, assessed across 5 levels
- LOD: detection of impurities $\geq 1\%$
- Conclusion: method suitable, recommendation to replace existing SDS-PAGE method for purity assessment

	Dose Linearity (R²)	Accuracy (%Recovery)	Intermediate Precision (%CV)
ads	1.00	99-102%	0.2-0.4%
FHA	0.99	97-100%	0.2-0.8%
ads	0.99	96-103%	0.3-0.9%
Ы	1.00	100-105%	0.6-1.0%

Conclusions

- Successfully developed and validated an SDS-CGE method for replacement of SDS-PAGE for purity determination of cP antigens implementation in QC as a release test
- Antigen specific optimization:
 - FIM 2/3: TCEP reducing agent not a suitable alternative for β -mercaptoethanol
 - PRN: identification of LMW and HMW peaks
 - PT: identification of impurities, optimized sample preparation and instrument parameters to maximize resolution of subunits
 - FHA: CGE-based purity suitable despite lower observed CPA, identification of impurities, and manual integration of truncates
- Validation: demonstrated method is suitable for intended purpose based on method performance (linearity, accuracy, precision, specificity) and is an option to replace existing SDS-PAGE method for antigen purity assessment

Acknowledgements

Sanofi Analytical Sciences (Toronto)

Biochemistry

- Ewa Zielinska
- Yukyung Ha
- Hetvi Shah
- Diana Keizner
- Shakiba Ghaffari
- Shaolong Zhu
- Reza Pourhaghighi
- Biophysics & PAT

sanofi 🍪 eurofins

Przemek Kowal

Sanofi Quality Control (Toronto)

Analytical Excellence

- Agnesa Shala-Lawrence
- Michael Puhacz
- Lori Peplinskie

Chemistry

- Samaneh Beheshti
- Kim Lam
- Bhupinder Hunjan

Biostatistics

- Sophia Lee
- Kai He
- James Lan

Sanofi Analytical Sciences/QC (Swiftwater)

- Christine Richards
- Jennifer Moyer

Eurofins Professional Scientific Services (PSS)

• Rahul Misra

