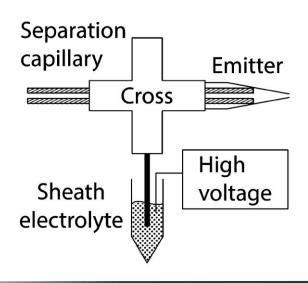

Automated and high-resolution cIEF-MS methods for delineation of proteoforms and protein complexes

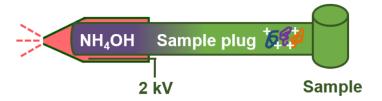
Michigan State University
Tian Xu
CE Pharm 2021

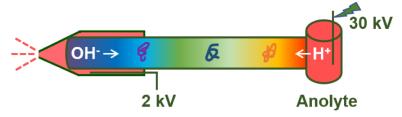
Capillary isoelectric focusing (cIEF)


- Separation based on analytes' pls
- > 50-100 µm i.d. capillary with neutral coatings (linear polyacrylamide)
- > Features
 - Ultrahigh resolution for protein separation (Δpl: 0.001)
 - Concentrate and separate analytes simultaneously
 - High sample loading capacity (µL)
 - Accurate pl information of proteoforms

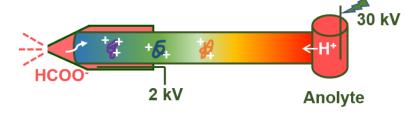
Automated cIEF-MS

EMASS-II CE-MS interface

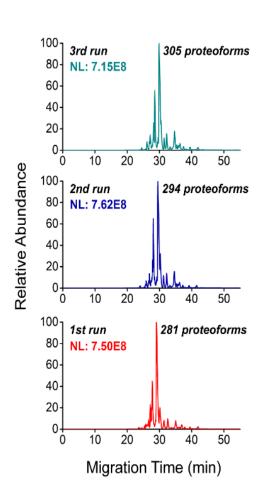


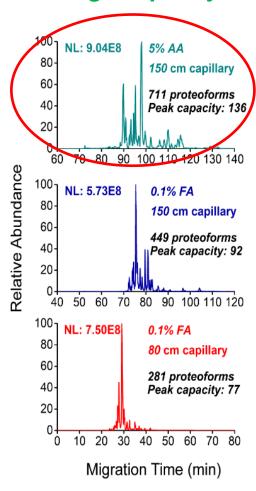

Automated cIEF-MS/MS method

"Sandwich" sample injection configuration

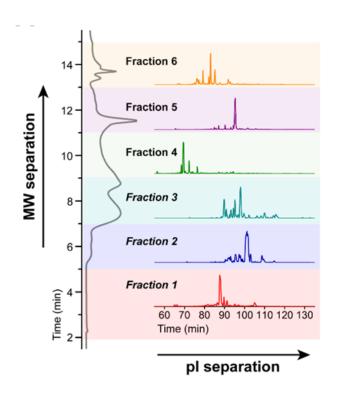

Step 1. Catholyte and sample injection

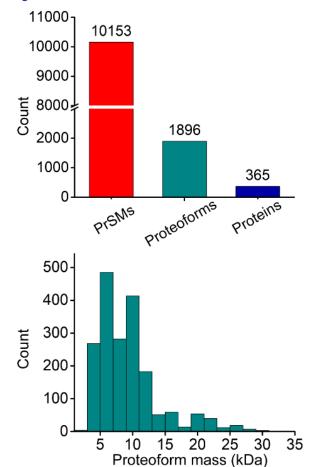
Step 2. Focusing based on isoelectric point


Step 3. Chemical mobilization



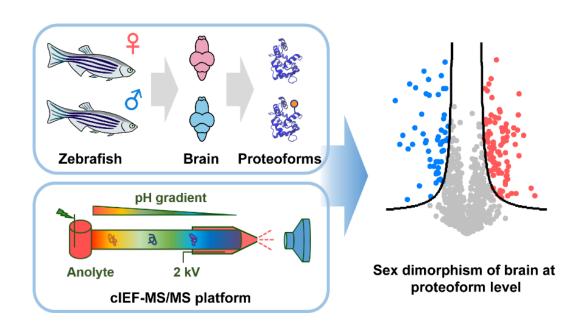
Automated cIEF-MS/MS for TDP of *E. coli*


High throughput



High capacity

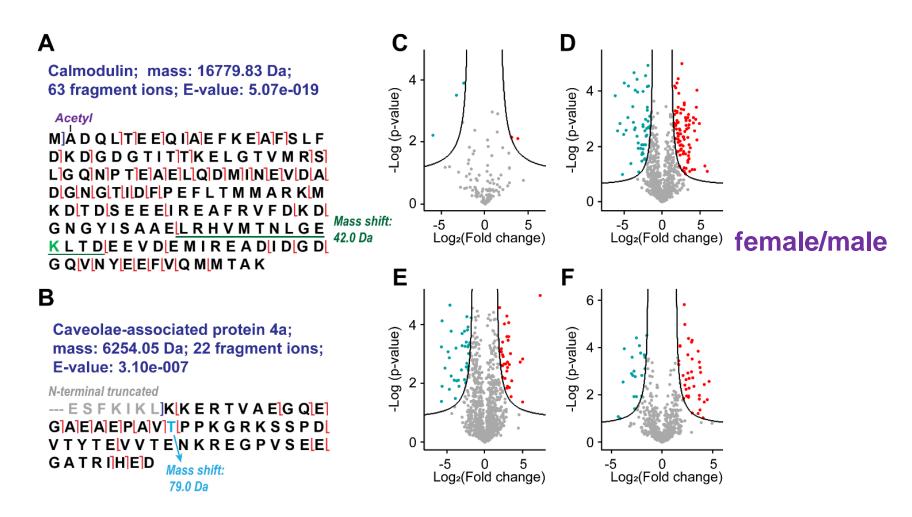
SEC-cIEF-MS/MS analysis of E. coil



The data represents the first TDP dataset using cIEF-MS/MS

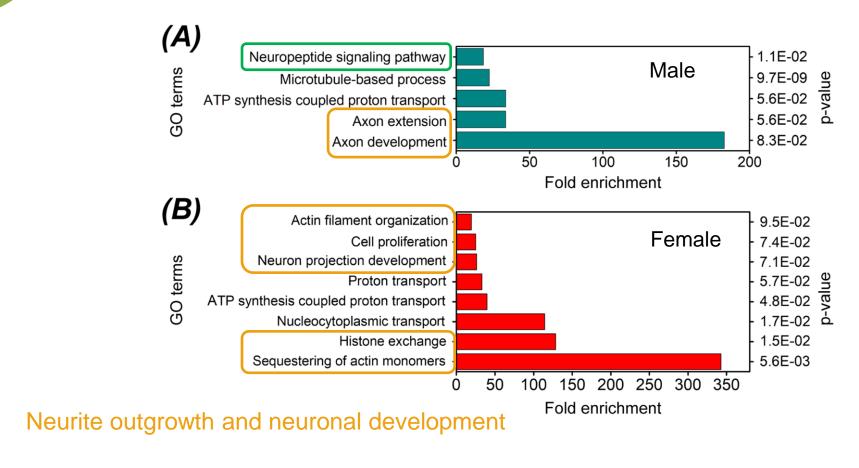
Quantitative TDP of zebrafish male and female brains

- > Sexual dimorphism of brains: the expression of sex chromosome genes and effects of hormones secreted from gonads.
- > No TDP studies have been done to study the sex dimorphism.
- > Zebrafish is an important model organism in developmental biology for both embryogenesis studies and drug development.



Label-free quantification (LFQ)

TopPIC software from Dr. Xiaowen Liu's group (Tulane University)


LFQ of zebrafish brain proteoforms

263 proteoforms showed statistically significant difference in abundance.

GO enrichment analysis of differentially expressed proteoforms

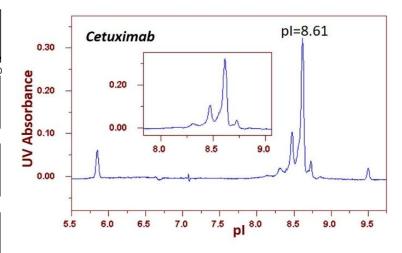
Peptide hormones

POMC and PDYN (pro-opiomelanocortin and prodynorphin)

Automated cIEF-MS for monoclonal antibody (mAb) charge variants

- cIEF-MS is a powerful tool for characterizing mAb charge variants.
 - High-resolution separation.
 - automated operation.
 - much better identification of charge variants than the traditionally used cIEF-UV.
- Further improvement in stability and separation resolution is needed.
- Our work:
 - Bettered the quality of linear polyacrylamide (LPA) capillary coating.
 - Reduced catholyte pH to 10.
 - Systematically optimized the cIEF-MS separation conditions for characterizing of mAbs.

Charge variants of cetuximab

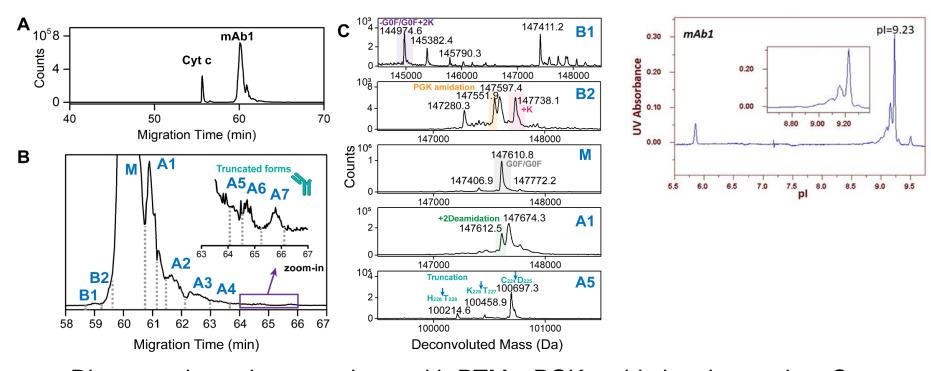

cIEF-MS

Α 150991.8 151182.8 150793.5 10^{3}_{4} 10⁵ Cetuximab Cvt c Counts 1054-151055.7 150648.9 151217.4 50 60 Migration Time (min) 151000 152000 В 10₆-.8 151671.0 151833.1 151995.6 1 15 **A1** Counts 151056.8 Cetuximab zoom-in 151000 152000 +2NGNA 152124.5 152286.6 10⁴₃ **A2** 152611.0 153000 10⁴2 +4NGNA **A3** 152793.4 56 57 58 Migration time (min) 153000 Deconvoluted Mass (Da)

N-glycolyl neuraminic acid (NGNA)

Parameters for cIEF: 75 cm LPA-coated capillary, 30 cm catholyte plug, 45 cm sample plug, 0.8 mg/mL cetuximab, 0.05 mg/mL cytochrome c, 2% three-ampholyte mixture (pH range of 3-10, 5-8 and 8-10.5, ratio 1:2:4), 20 kV separation voltage, 10 mbar pressure applied at 20 min.

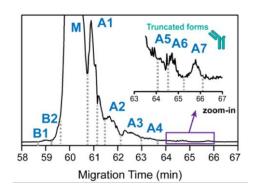
cIEF-UV

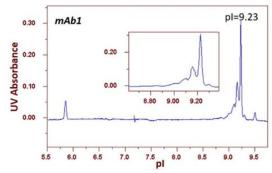

Cartridge: FC-Coated cIEF Capillary
Cartridge, ProteinSimple Catalog No.
101701. Pharmalyte: Pharmalyte 3-10.
Final prepared sample: 0.8 M Urea,
0.28% methyl cellulose, 4% carrier
ampholytes, 0.2% pl 5.85 marker, 0.2% pl
9.50 marker, ~1.0 mg/mL protein.
Focusing period 1: 1500V for 1 min;
Focusing period 2: 3000V for 8 min. UV
detection wavelength: 280 nm. System:
iCE3 (ProteinSimple).

Charge variants of mAb1

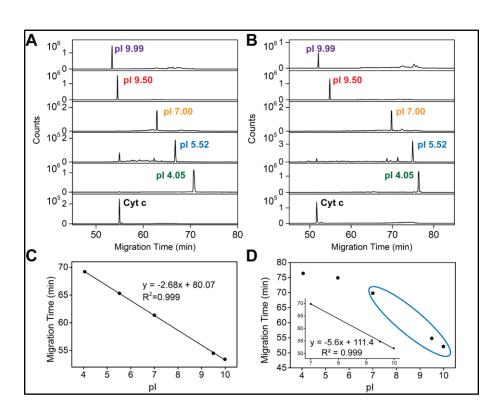
cIEF-UV

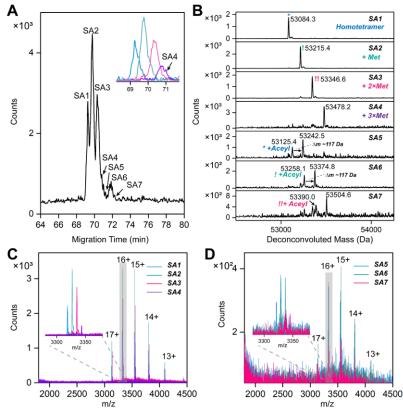



- Discovered ten charge variants with PTMs: PGK amidation, incomplete Cterminal lysine clipping, glycosylation, and deamination.
- Achieved much more complete analysis than the cIEF-UV.



pl determination of mAb1 charge variants


	Data 1			Data 2			Data 3				
	t1	t2	pl	t1	t2	pl	t1	t2	pl	Mean	SD
М	59.6	57	9.15	53.3	56.9	9.17	56.3	56.9	9.17	9.16	0.01
A1	60.5	57.9	9	54.2	57.8	9.01	57.2	57.8	9.01	9.01	0.01
A2	61.4	58.8	8.85	55.2	58.8	8.85	58.2	58.8	8.85	8.85	0.00
A3	62.1	59.5	8.73	56	59.6	8.71	59	59.6	8.71	8.72	0.01



- Achieved reproducible measurements of pls of charge variants (cyto.c for normalization)
- UV and MS data agreed well.
- Provide a useful approach for studying how PTMs influence pls of proteoforms in TDP.

Automated and native cIEF-MS for protein complexes

- Streptavidin (SA): Homo-tetramer
- High-resolution separations of seven proteoform complexes of SA.
- Determined the pls of SA homo-tetramers and studied how sequence variations and acetylation influence the pl of SA homotetramer.
- Provide a useful tool for native top-down MS delineation of protein complexes.

Collaboration with Abbvie (Dr. Linjie Han)

SA variants	Normalized	migration	time (min)		pl		
	Run#1	Run#2	Run#3	Run#1	Run#2	Run#3	(Mean±STD)
SA1	62.82	62.60	62.70	7.36	7.36	7.40	7.37±0.02
SA2	63.09	62.84	62.90	7.26	7.29	7.33	7.29±0.03
SA3	63.38	63.26	63.22	7.16	7.16	7.22	7.18±0.03
SA4	63.67	63.43	63.50	7.07	7.06	7.12	7.08±0.04
SA+acetylation	64.14	63.73	63.90	6.90	6.94	6.99	6.94±0.04

Acknowledgments

- Advisor:Prof. Liangliang Sun
- Collaborator:Dr. Linjie Han (Abbvie)
- > Group members:
 - Qianjie Wang
 - Qianyi Wang
 - Jorge Colonrosado
 - Fei Fang

Support:

