

Rapid Characterization of Charge Isoforms of New Modalities by iCIEF-MS

Milady Ninonuevo and David A. Michels Genentech, a member of the Roche group

Scott Mack, John Yan, Maggie A. Ostrowski, Erik Gentalen SCIEX

CE Pharm 2021

The National Institute for Innovation in Manufacturing Biopharmaceuticals

Biologics Manufacturing Process

New Modalities are rapidly progressing...

2010-2019 FDA Approved Drugs

J. Med. Chem. 2021, 64, 5, 2312-2338

for the *patients* with unmet medical needs

Bispecifics are Becoming the Next-Generation Biologics

- Three bispecifics are FDA-approved for therapy (Rybrevant, Blincyto, Hemlibra)
- > 100 are in clinical development
- > 80 different formats (5 distinct groups)

Knob-into-Hole Bispecific

Two distinct half antibodies dimerized via Knob-into-Hole technology.

Ridgway, JB., Presta, LG., Carter, P. Protein Engineering 9 (1996) 617-621

Challenges in Analytics of Bispecifics

KiH Bispecific Fermentation Products

- Product quality assessment of two different fermentation products
- Unique **assembly step added complexity** to the process
- Peculiar product and processrelated variants incite early characterization

Quality Attributes and Control System

Category	Quality Attributes	Control System Methods	
Charge	Deamidation, Glycation, Proline Amidation, C-terminal Lysine	iCIEF, IEC	
Size	HMW and LMW forms	SEC, CE-SDS	
Sequence Variant	Sequence variants	LC-MS/MS	
Oxidation	CDR and Fc oxidation	Peptide Map	
Cysteine related	Free thiol, trisulfide, disulfide scrambling	Non-reduced peptide map	

iCIEF is a Reliable Method for Charge Heterogeneity

- Provides a critical quality measure of "purity"
- Used for lot release, stability and extended characterization

- Separation based on isoelectric point (pl)
- pH gradient is provided by a mixture of ampholytes
- Proteins are focused through the ampholyte medium until they reach a net zero charge state at their isoelectric point
- Apparent pl values can be approximated using two internal markers

Challenges with Identification of Charge Isoforms

Identification

- **Days/weeks spent** on development, scale-up, LC-MS analysis
- **Huge sample** amount requirement for scale-up
- Potential **artifacts** induced from the isolation process can complicate data interpretation
- Necessitate both IEC/iCIEF and bridge back to LC-MS data

NIIMBL Project: Intabio Blaze[™] Microchip System for Real-Time Characterization of Intact Biopharmaceuticals

- To align this Intabio Blaze[™] technology with the most urgent needs of biopharma
 - 1. Verify and validate Blaze[™] assay performance on partner samples
 - Identify data analysis features and develop an MS adaptor to facilitate the efficient integration of Blaze[™] into the biopharmaceutical analytical workflow
 - 3. Assessment for in-line Bioreactor Analytics Workshop
- Genentech bispecific samples* analyzed:
 - 1. Basic pH stressed
 - 2. Main peak IEC fraction

*previously characterized by traditional methods

Intabio Blaze[™] iCIEF – MS System

Key Benefits: Integrated system – separation, ٠ quantitation and MS analysis Identification/characterization in minutes ٠ VIS system iCIEF is similar to release method ٠ iCIEF separation and UV detection Peak Sample Mass spec mobilization detection introduced to MS Electrospray Electrolyte ionization Separation Channel nebulizer channels C∝ A F Sample Introduction в D ESI to MS Microfluidic Chip

Intabio technology presentation:

Sept 16th, 10:15am PST Title: Technology Innovations to Enable Rapid, Comprehensive Charge Variant Characterization of Biotherapeutics by Microfluidic Chip-Based iCIEF-MS Presenter: Scott Mack, Intabio/SCIEX

Good Repeatability

UV Trace at 280 nm from iCIEF-MS

% CV < ~7 % (n = 3)

Peak Label	Average pl	%CV of pl	Average Relative Area %	%CV of Peak Area
Basic 2	9.17	0.06	2.0	6.7
Basic 1	9.15	0.00	1.5	7.2
Main	9.08	0.00	27.7	1.1
Acidic 1	9.00	0.06	37.5	0.9
Acidic 2	8.93	0.00	22.2	1.5
Acidic 3	8.84	0.26	9.1	2.6

MS (Base Peak) from iCIEF-MS

Consistent Profiles Between iCIEF (UV) and Mirror Image of MS BPE for Confident Peak ID

MS BPE = MS Base Peak Electropherogram

iCIEF-MS Analysis of a Bispecific Stressed Sample

Mass Spectra of Main and Acidic Peaks Identify Deamidation and Glycation

Mass (Da)

Deamidated Clips Measured by iCIEF-MS in Acidic Peaks

Clips and their charge variants are also separated and detected by Intabio iCIEF-MS

Comprehensive Characterization of Charge Heterogeneity in a Single iCIEF-MS Analysis

Annotated iCIEF electropherogram of basic pH stressed bispecific sample

Isolated Main Peak Fraction (IEC vs iCIEF)

- IEC and iCIEF have fundamentally different separation mechanisms
 - Protein-column interaction cause adsorption in IEC
- Imaged CIEF can resolve charge isoforms that IEC cannot
 - Intabio Blaze[™] system can help identify these isoforms

iCIEF-MS Analysis of Main Peak Fraction

Roche

Acidics in the main peak fraction primarily comprise of glycation and deamidation

iCIEF-MS Analysis of Main Peak Fraction

• In-depth and extensive characterization of a purified sample even for very low abundant attributes

Summary and Outlook

- iCIEF-MS as a new analytical tool for a rapid charge isoform characterization of bispecifics
- This new analytical platform yields comprehensive analysis providing UV quantitation, peak identification and pl values
- Deamidation events with a small mass difference of ~1 Da were resolved and characterized at the intact level
- Difficult to detect combinations of PTMs were detected and identified

Benefit of iCIEF-MS system:

 Speeds up decisions on bioprocess development and production (e.g. clone selection, process validation, product quality assessment)

Acknowledgments

Genentech

David A. Michels

Jackie Tyler

Alexander Kozintsev

Rachna Sah

Kimberly Kaleas

SCIEX

Scott Mack John Yan Maggie A. Ostrowski Erik Gentalen Lena Wu Kristin Bissell

Partially funded by:

The National Institute for Innovation in Manufacturing Biopharmaceuticals

Doing now what patients need next