CE Pharm 2020 Sep 29th, 2020

Breakthroughs that change patients' lives

Development and Optimization of a LabChip[®] Method for Characterization of a Heavily Sialylated Protein and its Advantage in High-Throughput In-Process Development Support

<u>Qing Yu,</u> Smit Patel, Qian Wang, John Davis, Angela Stead, Anastasiya Manuilov, Neil Steinmeyer and Tanya Shang

> Analytical R&D, Biotherapeutics Pharm. Sci., Pfizer Inc., Andover, MA

Outline

➤Introduction

- Overview of High-Throughput (HT) process development and process qualification
- Analytics used in high-throughput studies
- Challenges from conventional to HT technology

≻Case Study

- Current reducing CE-SDS method for protein X using PA800+
- LabChip method development and troubleshooting
- Results from LabChip and PA800+

Discussion

HT Biomanufacturing Process Development

Goal: assess the impact on potential Critical Quality Attribute (CQAs) and generate data to identify and set control limits on Critical Process Parameter (CPPs).

Analytics used in high throughput studies

• Conventional and emerging HT technologies available for measuring CQAs in upstream and downstream processing

Size Based CE Application in Pharmaceutical Development

Gold-Standard Conventional CE-SDS (PA800+)

Breakthroughs that change patients' lives

HT Technology MCE (LabChip[®] GXII Touch)

Meets HT Analytics requirement

- < 1 minute per sample; 96-well plate in < 1.25 hr</p>
- ✓ Multiple assays in 96-well or 384-well format
- Wide variety of samples with limited sample preparation time
- Low detection limit: 5 ng/mL with minimal sample volume requirement (~ 5 μL)

Challenges from Conventional to HT

Atypical profile attributed to molecule-specific heterogeneity

Atypical profile: heavy chain was split into two isomers
Fix: Customize SDS/LDS concentration in sample buffer

Journal of Pharmaceutical and Biomedical Analysis 120 (2016) 46-56

Atypical profile: Artificial peak observed prior to NGH
Fix: Double the denaturation solution to sample ratio

Future enhancements to instrumentation, protocols, and separation chemistries are required

Challenges from Conventional to HT

> Higher resolution is needed to separate product variants of similar sizes without sacrificing signal response.

> Higher sensitivity is desired to accurately quantify low-expressing proteins and proteins from HT purification.

 Sample pre-concentrating (ultra-filtration, et al) *Electrophoresis 2011, 32, 1129–1132*

Case Study

Protein X Configuration and Glycosylation Occupancy

➢ Protein X:

- Two subunits, S1 and S2, covalently linked by disulfide bonds
- Fully occupied glycosylation sites on S1. One partially occupied glycosylation site on S2
- Heavily sialylated with high heterogeneity
- The size of S2 is three times larger than S1

➢ For release, purity was monitored by reducing CE-SDS

>For lab-scale process qualification, purity and aglycosylated S2 need to be monitored

First Look from PA800+ to LabChip

	Protein Express (PE) Assay (14-200 kD)	Low Molecular Weight (LMW) Assay (5-80 kD)
Designed for	Size, concentration, % purity of proteins	Size, concentration, % purity of proteins
MW range	14 – 200 kD	5 – 80 kD
Run time per sample	42 seconds	60 seconds
Samples per reusable chip	400	400

First Look from PA800+ to LabChip

First Look from PA800+ to LabChip

Breakthroughs that change patients' lives

• Ferguson plot (explained why PE gel gives better separation)

- Log₁₀ (mobility) is inversely proportional to gel concentration
- The slope of the plot is proportional to the MW of the molecule
- With lower % gel, mobility of both S1 and S2 increases
- At certain range, S1 linear mobility change is greater than S2 with lower gel %
- Mobility of S1 and S2 changes differently due to significant size difference

Progressively deteriorating Profile

- A progressively deteriorating electropherogram was observed with the accumulation of replicate injections.
- Something may be building up inside the separation channel gradually after multiple injections and can change the mobility of reduced species.

Capillary Conditioning with Acid

Capillary Conditioning Window Hypothesis

$$V_{ep} = \mu_{ep} E = \frac{q}{6\pi\eta r} * \frac{V}{L}$$

Symbol	Description	
Vep	Electrophoretic Velocity	
<mark>µ</mark> ер	Electrophoretic mobility	
E	Electric Field	
V	Voltage	
L	Length of the capillary	
q	Total charge of the analyte	
r	Hydrodynamic radius of the solute	
Breakthroughs that		

change patients' lives

- Fused silica capillary has a net negative surface charge under basic pH due to silanol groups (SiO⁻) (pKa 6.0 to 9.0)
- Water soluble silica adsorbing polymer (pH 7 to 9) coats the capillary with net charge as that of inner capillary surface (0.01% to 2.0%) (*US patent 5948227*)
- Sample buffer contains LDS at pH 8.4 which coats the protein with overall negative charge
- Separation is governed by electrophoretic mobility

Capillary Conditioning Window Hypothesis

- Acid injections increases H⁺ ions in the matrix;
- Ionic interactions increases hydrodynamic radius (r), thus reducing electrophoretic mobility and providing ideal separation

S2

200-

150-

100

Capillary Conditioning Window Hypothesis

- Excess H⁺ ions in the bulk layer; very slow or changed mobility
- Overall less charge on sialylated species micelles

$$V_{ep} = \mu_{ep} E = \frac{q}{6\pi\eta r} * \frac{V}{L}$$

Pfizer

Results Comparison of LabChip and PA800+

- Samples: Drug substance, upstream and downstream samples (step 1-4)
- LabChip: 3 chips were used with four replicates for each sample on every chip

- Results:
- Comparable data for PA800+ and LabChip
- LabChip: Higher %S2 + Lower %Aglyco S2

Comparison of Data: LabChip(s)

- Compatible with variety of sample matrix
- Comparable data from three chips

Breakthroughs that change patients' lives

Basics for CE-SDS

- SDS / protein = 1.4
- The electrophoretic mobility of the protein SDS complex is inversely proportional to the log (Mw). $V_{ep} = \mu_{ep}E = \frac{q}{6\pi nr} * \frac{V}{L}$
- Lower charge / size ratio for glycoproteins and lower mobility for glycosylated S1 and S2.

✤ To obtain the target profile

- 1) Decrease the % gel \longrightarrow mobility increased for all species; but S1 increased more due to significant size difference between S1 and S2 subunits (Ferguson plot)
- 2) Acid conditioning mobility decreased for all species
- LabChip® offers comparable results compared to PA800+ with significant advantage in high-throughput and extensive buffer compatibility

Ideal Profile Glycosylated S2 Aglyco S2 Glycosylated S1 In-Reality Target **Profile**

Acknowledgement

- Smit Patel
- ° John Davis
- Angela Stead
- Qian Wang
- Anastasiya Manuilov
- Neil Steinmeyer

- ° Nathan Lacher
- ° Himakshi Patel
- ° Heather Jean
- ° Rebekah Ward
- ° Madhu Venkatesh
- Tanya Shang

Thank you all for your attention!

