A Holistic Strategy to Characterize the In Vivo Stability of Novel Modalities using Affinity Capture Coupled to LC-MS or CE-Based Methods

> Cong Wu, Scientist and wu.cong@gene.com CE Pharm, October 1st 2020

Genentech

- Background
 - LM BCP MS group overview
 - Novel large molecule modalities
 - Biotransformation
- Analytical workflow for intact stability analysis
 - Affinity capture + LC-MS
 - CE LIF
 - CE Western blot
- Summary

Background

- LM BCP MS group overview
- Novel large molecule modalities
- Biotransformation
- Analytical workflow for intact stability analysis
 - Affinity capture + LC-MS
 - CE LIF
 - CE Western blot

• Summary

Large Molecule Biochemical and Cellular Pharmacology Mass Spec (LM BCP MS) group

Large Molecule Biochemical and Cellular Pharmacology Mass Spec (LM BCP MS) group

Pharmacokinetics (PK):

- Biotransformation:
 - Intact stability (clipping)
 - Amino acid level modification
 - Chemical stability of conjugates
- Biodistribution:
 - Total drug concentration in circulation
 - In tissue

5

Genentec

A Member of the Roche Group

Large Molecule Biochemical and Cellular Pharmacology Mass Spec (LM BCP MS) group

Pharmacokinetics (PK):

- Biotransformation:
 - Intact stability (clipping)
 - Amino acid level modification
 - Chemical stability of conjugates
- Biodistribution:
 - Total drug concentration in circulation
 - In tissue

6

©2012, Genentech

Genentec

A Member of the Roche Group

Background

- LM BCP MS group overview
- Novel large molecule modalities
- Biotransformation
- Analytical workflow for intact stability analysis
 - Affinity capture + LC-MS
 - CE LIF
 - CE Western blot

• Summary

Emerging new modalities aim to modulate challenging targets

C. Spiess, Q. Zhai, P.J. Carter, *Molecular Immunology*, 67, 2015, 95-106.

Biochemical and Cellular Pharmacology

Background

- LM BCP MS group overview
- Novel large molecule modalities
- Biotransformation
- Analytical workflow for intact stability analysis
 - Affinity capture + LC-MS
 - CE LIF
 - CE Western blot

• Summary

Biotransformation – in vivo intact stability

©2012, Genentech

10

Biotransformation – *in vivo* amino acid level modifications^{_11}

Deamidation – N, Q, Isomerization – D, E

Oxidation – M,W

Genentech A Member of the Roche Group

©2012, Genentech

Biochemical and Cellular Pharmacology

- Background
 - LM BCP MS group overview
 - Novel large molecule modalities
 - Biotransformation
- Analytical workflow for intact stability analysis
 - Affinity capture + LC-MS
 - CE LIF
 - CE Western blot
- Summary

Affinity capture + LC-MS workflow for intact stability analysis

Case study of a trimeric molecule stability in tissue

PK samples from Day 0 vs Day 3 showed no detectable degradation

A Member of the Roche Group

©2012, Genentech

Biochemical and Cellular Pharmacology

15

Comparison of bioanalytical tools for *in vivo* clipping characterization and quantitation

	LC-MS	CE-SDS LIF	CE-Western Blot
Specificity	High		
Sensitivity	Medium with MW bias		
Relative quantitation ability	Standards and calibration curve required		
Resolution	Single amino acid resolution		
Robustness	Medium		

©2012, Genentech

16

- Background
 - LM BCP MS group overview
 - Novel large molecule modalities
 - Biotransformation
- Analytical workflow for intact stability analysis
 - Affinity capture + LC-MS
 - CE LIF
 - CE Western blot
- Summary

Capillary Electrophoresis SDS Laser Induced Fluorescence (CE – SDS LIF)

• Calibration curve – LIF signal is directly quantitative

Fundamental steps of CE-SDS separation

Sciex PA800 plus

- 1. Denature samples with SDS (and DTT for reduced CE-SDS)
- 2. Fluorescently label samples with FQ dye
- 3. Signal detection at 600 nm upon excitation at 488 nm

Salas-Solano *et al. Anal. Chem.* 2006, 78, 6583-6594 Michels *et al. Electrophoresis,* 2012, 33, 815-826

Case study of a multimeric drug in a PK study

Case study of a multimeric drug in a PK study

- Fragmentation of intact drug was significant in the first ~8 days after single dose injection
- The relative percentages of intact and fragmented drugs remained the same after Day 8

Biochemical and Cellular Pharmacology

Comparison of bioanalytical tools for *in vivo* clipping characterization and quantitation

	LC-MS	CE-SDS LIF	CE-Western Blot
Specificity	High	Low	
Sensitivity	Medium with MW bias	Medium non-biased	
Relative quantitation ability	Standards and calibration curve required	LIF signal directly quantitative	
Resolution	Single amino acid resolution	Chain level resolution	
Robustness	Medium	High	

©2012, Genentech

21

- Background
 - LM BCP MS group overview
 - Novel large molecule modalities
 - Biotransformation
- Analytical workflow for intact stability analysis
 - Affinity capture + LC-MS
 - CE LIF
 - CE Western blot
- Summary

Rationale for biotransformation

A Member of the Roche Group

©2012, Genentech

Charge-based separation for deamidation

12 injection overlays showed high repeatability

- Limit of detection (S/N = 3): 6 ng/mL (2 pg/capillary)
- Dynamic range: 12.5 ng/mL
- Samples directly loaded

from cell culture supernatant

BACKGROUND ON CE WESTERN BLOT

A Member of the Roche Group

©2012, Genentech

PeggySue: Automated Multiplex Western Blot System

https://www.proteinsimple.com/sally_sue_video.html

LC- or HC-specific primary antibodies allow highly specific and sensitive detection of clipping events

Herceptin spiked in diluted C57BL/6 plasma @ 0 - 25.6 ng/mL

- In vivo samples can be directly analyzed without affinity capture after dilution
- Although sensitive, the dynamic range of CE Western is narrow 1~2 orders of magnitude

Genentech A Member of the Roche Group ©20 Biochemical and Cellular Pharmacology

Comparison of bioanalytical tools for *in vivo* clipping characterization and quantitation

	LC-MS	CE-SDS LIF	CE-Western Blot
Specificity	High	Low	High
Sensitivity	Medium with MW bias	Medium non-biased	High non-biased
Relative quantitation ability	Standards and calibration curve required	LIF signal directly quantitative	Quantitative in a narrow dynamic range
Resolution	Single amino acid resolution	Chain level resolution	Chain level resolution
Robustness	Medium	High	Medium

- Background
 - LM BCP MS group overview
 - Novel large molecule modalities
 - Biotransformation
- Analytical workflow for intact stability analysis
 - Affinity capture + LC-MS
 - CE LIF
 - CE Western blot
- Summary

In vivo intact stability triaging strategy for novel modalities Stable **Biotransformation** Molecule CE Western blot samples from *in* advancement or CE-SDS LIF vivo studies Not Clipping significant observed significant Affinity capture + intact LC/MS Molecular Clipping sites/mechanism re-engineering characterization

28

Future directions

Evaluate the connection and difference between

- In circulation vs at site of action
- healthy vs disease tissues

Characterize the mechanisms of in vivo clipping

- Enzymatic proteolysis
- Chemical hydrolysis
- In vitro system to recapitulate clipping in vivo
- Explore charge-based CE Western for other types of biotransformation
 - Deamidation
 - Glycosylation
 - Other charge-altering modifications

Acknowledgment

- Biochemical and Cellular
 Pharmacology
 - John Tran
 - Hilda Hernandez-Barry
 - Hannah Chi
 - Gawon Shin
 - Phillip Chu
 - Neha Srikumar
 - William Sawyer
 - Aarushi Grover
 - Siao Ping Tsai
 - Kelly Loyet
 - Gloria Meng
 - Ryan Cook
 - Zhengmao Ye
 - Jerry Wang
 - Yichin Liu

Genentec

A Member of the Roche Group

- Mercedesz Balazs
- Margaret Porter-Scott

- Antibody Engineering
 - Nick Agard
 - Greg Lazar

Protein Chemistry

- Diego Ellerman
- Rachana Ohri
- Richard Vandlen
- Adel ElSohly
- Breanna Vollmar

Protein Analytical Chemistry

- Brian Roper
- Thomas Niedringhaus
- David Michels
- PTPK
 - Vittal Shivva
- Molecular Oncology
 - Minhong Yan

Translational Immunology

Kristin Kallapur

AB Sciex

- Julia Sergunova
- John Mazzanti
- Dennis Price
- Robert Swart
- Protein Simple
 - Adrian Papas
 - David Voehringer
 - Steven Le
 - Ed Chase

Agilent

- Dan Fedyk
- Randy Bolger
- Rachel Loui
- Jose Meza
- Stephanie Diamond
- Brinker Gildersleeve

A Member of the Roche Group

AFFINITY CAPTURE ON ASSAYMAP

Adapted from Li KS, et al. 2018

Biochemical and Cellular Pharmacology

Comparison of various affinity capture approaches

		Pros	Cons
Bead based		 Compatible with dirty matrix; not prone to clogging Compatible with various elution methods Semi-automated 	 Bead pellets to bottom of well; incomplete bead removal Consumes more starting materials, reagents and labware Time-consuming
Plate	based	 Amenable to automation High throughput (>>1 plate) Fast 	 Well-to-well variability Method dev needed for on-plate degly and/or digestion Dead volume
Tip based	MISA tip*	 Amenable to automation Fast Ease of use 	 Tip binding capacity Prone to introducing bubbles Requires custom automation Not compatible with on-tip digestion
	AssayMap	 Automated Fast (1-2 plates) Ease of use Highly veritable utilities 	 Temperature control (>37°C) Tips are expensive consumables (reusable after testing) Integrability with custom automation

