

D UNIVERSITÄT BERN

Clinical Diagnostics of Transferrin Glycoforms by High-resolution CE

Prof. em. Wolfgang Thormann Institute for Infectious Diseases University of Bern Bern, Switzerland

CE Pharm 2020 – September 28, 2020

Transferrin is a glycoprotein

- Single peptide chain with 679 amino acids
- **Globular C- and in N-terminal domains with an Fe(III) binding site each**
- Two N-linked glycan chains (bound to asn at positions 413 and 611)
- Molecular mass: about 80 kDa
- 2-4 g/L in human serum (~ 4 % of total serum proteins)

Sialic acid

Serum transferrin (Tf)

Glycoforms with various Fe³⁺ loads and N-glycan chains
Carbohydrate-deficient transferrin (CDT, marker for chronic alcohol abuse)
Genetic variants, congenital disorders of glycosylation (CDG)

N -	SA ^{SA} SA SA SA Fe ³⁺ Fe ³⁺ C	Glycoform	% of total Tf (healthy person)	pI *)	
	SA SA SA Gal	Octasialo-Tf	ND	≈ 5.0	
		Heptasialo-Tf	< 1.5	≈ 5.1	
N -		Hexasialo-Tf	1-3	5.2	
Ţ		Pentasialo-Tf	12-18	5.3	
	SA SA	Tetrasialo-Tf	64-80	5.4	
		Trisialo-Tf	4.5-9	5.6	
N -		Disialo-Tf	< 1.7	5.7)
Ţ		Monosialo-Tf	ND	≈ 5.8	CDT
	a a a a A	Asialo-Tf	ND	5.9	J
N -	Fe ³⁺ C	*) complete iron saturated of C1-Tf			

SA = sialic acid, Gal = galactose

Adapted from Clin. Chem. 47 (2001) 13.

Common transferrin glycoforms

Forensic Sci. Int. 243 (2014) 14.

CE analysis of Tf glycoforms

- Glycoforms differ in charge and mass
- **Fe (III) saturation reduces number of molecules**
- > 20-50 μm ID fused-silica capillary
- Separation at alkaline pH (pH about 8.5)
- > Capillary wall conditioning
- Detection at 200 nm
- Immunoextraction (low Tf concentration and interferences)

CE instruments and reagents

- CE instrument with laboratory made or commercial reagents (CEofix, Analis, Belgium)
- Multicapillary analyzers with reagent kits (walk away automation) with Capillarys (Sebia) or V8 CE system (Helena Biosciences Europe)

High-resolution analysis based on CEofix CDT reagents of Analis

J. Chromatogr. A 1130 (2006) 272.

Sample preparation: serum + Fe^{3+} solution (60 µL each) • P/ACE MDQ (Beckman Coulter) • Capillary: 50 µm ID x 60 cm total length • Conditioner: 0.2 M NaOH • Initiator: polycation in Tris/phosphate, pH 2.0 • Buffer: polyanion in Tris/borate, pH 8.5 • Injection: 0.5 psi x 12.0 s (vacuum) • Separation: 20 kV, 30 °C • Detection: 200 nm • Sample throughput: 2.7/h **Assay of Analis:** 50 cm capillary/28 kV/30 °C **5** samples/h - lower resolution

Smaller amount of sample:

• NanoVials for 5 µL serum

CEofix electropherograms

Valley to valley peak integration; area % in relation sum of all Tf peaks.

Electrophoresis 25 (2004) 2309.

Patient monitoring Monitoring of a patient during 19 weeks with a relapse drinking episode (no blood alcohol could be determined)

Upper reference value for CDT: 1.70 %

Electrophoresis 25 (2004) 2309.

apparent half-lives:0-sialo-Tf: $T_{1/2}$ 2-sialo-Tf: $T_{1/2}$ CDT: $T_{1/2}$

 $T_{1/2} = 4.9 \text{ days}$ $T_{1/2} = 7.2 \text{ days}$ $T_{1/2} = 6.7 \text{ days}$

Patient screening for CDT

CDT values measured during a 10-year period (6449 samples)

CDT < 1.70 %: 5375 samples (83.35 %)

CDT ≥ 1.70 %: 1074 samples (16.65 %)

Asialo-Tf: 414 samples

J. Sep. Sci. 41 (2018) 303.

Quality control

Serum of a healthy person

Commercial controls

10-year period (664 samples) Mean ± SD: 1.02 ± 0.08 %

Years 1 and 2 (112 samples) Mean ± SD: 1.01 ± 0.05 %

Years 9 and 10 (158 samples) Mean ± SD: 1.08 ± 0.09 %

LC: lot change, AC: assay change, IC: instrument change

Electrophoresis 34 (2013) 1563.

External quality control

GTFC proficiency test, markers of alcoholism in serum:

AMF 3/07, sample B: positive

Data comparison (n=46) Our data vs. CE (not Sebia) and HPLC

results of 57 participants:

Assay	n	Mean (%)	RSD (%)
CE	10	3.84	10.4
Sebia	8	2.78	12.6
HPLC	26	3.70	12.2

Electrophoresis 34 (2013) 1563.

Immunoextraction of transferrin (low amounts of transferrin / interferences)

Before and after IgY Tf purification

Purification with lab made anti-Tf column

Immunosubtraction

J. Chromatogr. A 1206 (2008) 33.

SE: serum analysis FT: flow-through fraction IE: immunoextract IS: immunosubtraction EC: 2.25-fold diluted serum EC-IS: difference data

J. Sep. Sci. 35 (2012) 3521.

Genetic variants of transferrin

- Substitution of one or several amino acids in peptide chain ullet
- **Composite of two glycoform patterns (typically 1:1 distribution)** •

Homozygote alcohol abuser

J. Chromatogr. A 1130 (2006) 272.

Genetic variants of transferrin

J. Sep. Sci. 37 (2014) 1663; J. Sep. Sci. 41 (2018) 303.

Transferrin patterns after desialylation

- Removal of sialic acid with neuraminidase
- Analysis of genetic variants by CZE

Effect of enzym. treatment

Genetic variants

Congenital disorders of glycosylation

- Type I: defects in the assembly and transfer of the oligosaccharide chain resulting in lack of complete N-glycans (hypoglycosylation)
- Type II: defects in the trimming and processing of the protein-bound glycans resulting in immature, truncated glycans (undersialylation)

Type I CDG: Same glycoforms as healthy person and alcohol abuser

Congenital disorders type II

J. Sep. Sci. 41 (2018) 2808; J. Sep. Sci. 43 (2020) 241.

Mixed type I/II cogenital disorders

- Common, hypoglycosylated and undersialylated glycoforms
- **PGM1 CDG (phosphoglucomutase)**

Patient sera with high trisialo-Tf

Normal levels: trisialo-Tf 3-7 %; disialo-Tf < 1.70 %

High and broad trisialo-Tf: 18.0 % Disialo-Tf: 0.61 %

Elevated trisialo-Tf: 11.2 % Disialo-Tf: 0.71 %

Low trisialo-Tf: 1.35 % Disialo-Tf: 1.52 % Peak marked with *:

additional Tf peak in sera with elevated trisialo-Tf which comigrates with undersialylated disialo-Tf.

J. Sep. Sci. 31 (2008) 3079; J. Sep. Sci. 41 (2018) 303; J. Sep. Sci. 43 (2020) 241.

Transferrin in cerebrospinal fluid (CSF)

β-2-Tf in nasal fluid marks CSF leakage
β-2-Tf in CSF as test for neurodegenerative diseases

1:2 mixture of CSF and alcohol abuser

Alcohol abuser

1:1 mixture of CSF and neuraminidase serum

Neuraminidase treated serum

150-fold concentrated CSF (----- after Tf immunosubtraction)

J. Sep. Sci. 43 (2020) 241.

- β-2-Tf of CSF comprises a double peak
- First peak of β-2-Tf comigrates with asialo-Tf of neuraminidase treated serum
- CSF contains monosialo-Tf which comigrates with that of neuraminidase treated serum

Clinical Diagnostics of Transferrin Glycoforms by High-resolution CE

Analysis as Fe³⁺ saturated glycoforms at alkaline pH
Carbohydrate-deficient transferrin (CDT), marker for chronic alcohol abuse
Genetic variants, congenital disorders of glycosylation (CDG)
Transferrin in cerebrospinal fluid (CSF)

Pros and cons of Tf analysis by CE

Pros:

- Sample preparation
- Small amount of sample
- Automation
- Precision (RSD < 5 %)
- High resolution / high throughput
- Abnormal Tf patterns

Cons:

- Unselective detection (200 nm)
- Occasional interferences
- Insufficient Tf
- Insufficient resolution for selected patient sera

Acknowledgements

C. Lanz, J. Caslavska M. Kuhn, U. Marti, V. Deiss, J. Joneli, U. Wanzenried, J. Schiess, M. Hurni, F. Tagliaro, F. Bortolotti, F. de l'Escaille, J.-B. Falmagne, M. Tobler, P. Burda, C. Schild

> Swiss National Science Foundation Liver Foundation, Bern Analis, Suarlée, Belgium