

Protein Analysis by CE: Successes and Challenges

<u>Hermann Wätzig</u>¹; Imke Oltmann-Norden¹; Mona Mozafari¹; Hassan A. Alhazmi^{1, 2}; Markus Nachbar¹; Matthias Stein¹; Rebecca Wiesner¹; Holger Zagst¹; Christin Scheller¹; Julia Kahle¹ ¹Institute of Medicinal and Pharmaceutical Chemistry, University of Braunschweig, Germany ²Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, 45142 Jazan, Saudi Arabia

Correspondence: h.waetzig@tu-braunschweig.de

A very beautiful protein

but by far not the only one!

http://www.fitness4mma.de/ern-nahrungsmittel.php http://www.protein-shake.ch/WelchesProtein/PflanzlichesProtein.aspx http://proteineeiweiss.de/was-sind-proteine http://www2.klett.de/sixcms/list.php?page=lehrwerk_extra&titelfamilie=&extra=MarkInline%20Biologie%20 Oberstufe&modul=inhaltsammlung&inhalt=klett71prod_1.c.844549.de&kapitel=844584

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 3

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

Success story SDS-PAGE and CE-SDS

A. Guttman, J. Nolan, Analytical Biochemistry 221, 285-289 (1994)

Rustandi, R. R., Washabaugh, M. W., Wang, Y., *Electrophoresis* 2008, *29*, 3612–3620.

Lacher, N. A., Roberts, R. K., He, Y., Cargill, H., Kearns, K. M., Holovics, H., Ruesch, M. N., *J. Sep. Sci.*, 2010, 33, 218–227.

Nunnaly, B., Park, S. S., Patel, K., Hong, M., Zhang, X., Wang, S. X., Rener, B., Reed-Bogan, A., Salas-Solano, O., Lau, W., Girard, M., Carnegie, H., Garcia-Canas, V., Cheng, K. C., Zeng, M., Ruesch, M., Frazier, R., Jocheim, C., Natarajan, K., Jessop, K., Saeed, M., Moffatt, F., Madren, S., Thiam, S., Altria, K., *Chromatographia* 2007, *66*, 955–961.

Cari Sänger-van de Griend, CE-SDS method development, validation, and best practice—An overview, Electrophoresis 2019, DOI 10.1002/elps.201900094

Outline

Proteins: classification

antibodies and enzymes, collagen, IDPs, viruses, etc. adsorption selectivity; buffers, CE-MS; 2-DE

Case study: collagen

Case study: AtHIRD11, an intrinsically disordered protein (IDP)

Protein size characterization

Preliminary conclusions and outlook

Protein classification

Clustering/Classification/Mapping by:

Sequence alignment; clustering

Sequence alignment

- 1G1Q : P-Selectin lectin/ EGF domains
- 4C16 : E-Selectin lectin, EGF-like and two SCR domains

Protein classification

Clustering/Classification/Mapping by:

Sequence alignment; clustering

Protein classification

Clustering/Classification/Mapping by:

Sequence alignment; clustering

Domains

https://en.wikipedia.org/wiki/Protein_domain and examples given therein Nir Ben-Tal, Rachel Kolodny, Isr. J. Chem. 2014, 54, 1286 – 1292 InterPro: Alex Mitchell et al., *Nucleic Acids Research, 2015, Vol. 43, Database issue D213–D221, doi: 10.1093/nar/gku1243 HMMER:* Robert D. Finn et al., *Nucleic Acids Research, 2015, Vol. 43, Web Server issue, published online 05 May 2015, doi: 10.1093/nar/gkv397*

Proteins: similar domains, similar selectivity?

Overview of protein structures (http://absoluteantibody.com; 2015)

Proteins: similar domains, similar selectivity?

Overview of protein structures (http://absoluteantibody.com; 2015, 2019)

Proteins: similar domains, similar selectivity?

https://en.wikipedia.org/wiki/Protein_domain, examples:

Armadillo repeats

Death effector domain (DED)

Phosphotyrosinebinding domain (PTB)

By Jawahar Swaminathan and MSD staff at the European Bioinformatics Institute http://www.ebi.ac.uk/pdbe-srv/view/images/entry/3bct600.png, displayed on http://www.ebi.ac.uk/pdbesrv/view/entry/3bct/summary, Public Domain, https://commons.wikimedia.org/w/index.php?curid=5937207

But: there are properties which cannot be explained by domains only: e.g. adsorption/aggregation

https://en.wikipedia.org/wiki/Protein_domain, examples:

Armadillo repeats

Death effector domain (DED)

Phosphotyrosinebinding domain (PTB)

By Jawahar Swaminathan and MSD staff at the European Bioinformatics Institute http://www.ebi.ac.uk/pdbe-srv/view/images/entry/3bct600.png, displayed on http://www.ebi.ac.uk/pdbesrv/view/entry/3bct/summary, Public Domain, https://commons.wikimedia.org/w/index.php?curid=5937207

But: there are properties which cannot be explained by domains only: e.g. adsorption/aggregation

Agrawal NJ, Kumar S, Wang X et al. (2011) J Pharm Sci 100(12): 5081– 5095. doi: 10.1002/jps.22705.

Protein classification

Clustering/Classification/Mapping by:

Sequence alignment; clustering

Domains

https://en.wikipedia.org/wiki/Protein_domain and examples given therein Nir Ben-Tal, Rachel Kolodny, Isr. J. Chem. 2014, 54, 1286 – 1292 InterPro: Alex Mitchell et al., *Nucleic Acids Research, 2015, Vol. 43, Database issue D213–D221, doi: 10.1093/nar/gku1243 HMMER:* Robert D. Finn et al., *Nucleic Acids Research, 2015, Vol. 43, Web Server issue, published online 05 May 2015, doi: 10.1093/nar/gkv397*

Protein classification

Clustering/Classification/Mapping by:

Sequence alignment; clustering

Domains

https://en.wikipedia.org/wiki/Protein_domain and examples given therein Nir Ben-Tal, Rachel Kolodny, Isr. J. Chem. 2014, 54, 1286 – 1292 InterPro: Alex Mitchell et al., *Nucleic Acids Research, 2015, Vol. 43, Database issue D213–D221, doi: 10.1093/nar/gku1243 HMMER:* Robert D. Finn et al., *Nucleic Acids Research, 2015, Vol. 43, Web Server issue, published online 05 May 2015, doi: 10.1093/nar/gkv397*

Consider Function/Physicochemical Properties?

Physicochemical Properties of Proteins

Institut für Medizinische und Pharmazeutische Chemie

Physicochemical Properties of Proteins

Institut für Medizinische und Pharmazeutische Chemie

Capillary Electrophoresis (CE): Capillaries

material

- amorphous fused silica (SiO₂)
- outer polyimide coating
 - → very flexible
- inner coating possible

typical diameters

- inner: 20-100 μm
- outer: 150-375 µm

lengths

- many possibilities
- mostly 30-100 cm

Capillary Electrophoresis (CE): Capillaries

from: Landers, J. P.: Handbook of Capillary Electrophoresis

Challenge: Protein adsorption

S. Kaupp, R. Steffen, H. Wätzig J. Chromatogr. A 744, 93-101 (1996)

H. Wätzig, S. Kaupp,
M. Graf
Trends Anal. Chem.,
22(10), 588-604 (2003)

Separation of plasma proteins without regenerating the capillary:

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 23

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

Rinsing: sucessful approaches 1997

200 mM SDS, high pH (e.g. pH 10, borate buffer), organic solvent (e.g. isopropanol)

sodium hydroxide

enzymes

hydrofluoric acid (HF)

Precision of protein analysis by LPA-coated capillaries and 2M HCI, 3M HCI and phosphoric acid 85% (w/w) rinsing

Protein	Concentration	рН	Rinsing Reagent	Number of Runs	tmig of EOF marker	µEOF app	
					mean ± SD [min]	mean ± SD [10 ⁻⁸ m²V ⁻¹ s ⁻¹]	RSD%
ß-lactoglobulin	175 µM	5.5	2M HCI	60	9.82 ± 0.527	2.45 ± 0.129	5.27
ß-lactoglobulin	175 µM	5.5	3M HCI	60	10.51 ± 0.372	2.29 ± 0.079	3.43
ß-lactoglobulin	175 µM	5.5	H ₃ PO ₄ 85% (w/w)	60	10.77 ± 0.263	2.23 ± 0.054	2.44

Protein	Concentration	рН	Rinsing Reagent	Number of Runs	tmig of EOF marker	µEOF app	
					mean ± SD [min]	mean ± SD [10 ⁻⁸ m²V ⁻¹ s ⁻¹]	RSD%
ß-casein	35 µM	3.5	2M HCI	30	8.26 ± 0.42	2.91 ± 0.152	5.2
ß-casein	35 µM	3.5	H ₃ PO ₄ 85% (w/w)	30	8.28 ± 0.167	2.90 ± 0.06	2.08

A. Suratman, H. Wätzig, Electrophoresis 2007, 28, 2324-2328

Precision of protein analysis by LPA-coated capillaries and 2M HCI, 3M HCI and phosphoric acid 85% (w/w) rinsing

Protein	Concentration	рН	Rinsing Reagent	Number of Runs	tmig of EOF marker mean ± SD	mean	
					[min]	[10 ⁻⁸ m ²	
ß-lactoglobulin	175 µM	5.5	2M HCI	60	9.82 ± 0.527	2.45 ± 0.129	5.27
ß-lactoglobulin	175 µM	5.5	3M HCI	60	10.51 ± 0.372	2.29 ± 0.079	3.43
ß-lactoglobulin	175 µM	5.5	H ₃ PO ₄ 85% (w/w)	60	10.77 ± 0.263	2.23 ± 0.054	2.44

Protein	Concentration	рН	Rinsing Reagent	Number of Runs	tmig of EOF marker	µEOF app	
					mean ± SD [min]	mean ± SD [10 ⁻⁸ m²V ⁻¹ s ⁻¹]	RSD%
ß-casein	35 µM	3.5	2M HCI	30	8.26 ± 0.42	2.91 ± 0.152	5.2
ß-casein	35 µM	3.5	H ₃ PO ₄ 85% (w/w)	30	8.28 ± 0.167	2.90 ± 0.06	2.08

A. Suratman, H. Wätzig, Electrophoresis 2007, 28, 2324-2328

Proteins: Rinsing: systematic approaches

Application of Affinity Capillary Electrophoresis for Charge Heterogeneity Profiling of Biopharmaceuticals

Hutanu et al. Andrei Hutanu*, Steffen Kiessig, Andrea Bathke, Rolf Ketterer, Sonja Riner, Jan Olaf Stracke, Markus Wild, Bernd Moritz. Electrophoresis 2019, accepted 13 SEP 2019

New approaches; Lit. cited: [7-13, 26-31] Outlined strategy

New reagents: guanidine hydrochloride, urea

Rinsing: sucessful approaches today

200 mM SDS, high pH (e.g. pH 10, borate buffer), organic solvent (e.g. isopropanol)

sodium hydroxide

hydrochloric acid (e.g. 2 M) phosphoric acid (85%)

guanidine hydrochloride (GDnCl)

urea

Capillary coatings

permanent coatings, e.g.

linear polyacrylamide (LPA) fluorocarbon

dynamic coatings, e.g.

(poly/oligo)amines polyethylene oxide (PEO) Polyvinyl alcohol (PVA) etc.

L. Hajba, A. Guttman, Trends Anal. Chem. 2017, doi: 10.1016/j.trac.2017.02.013.

Proteins and coatings: systematic approaches

A.-K. Schuler, O. Prucker, J. Rühe *Macromol. Chem. Phys.* 2016 *DOI: 0.1002/macp.201600065*

Oswald Prucker, Thomas Brandstetter, and Jürgen Rühe, Surface-attached hydrogel coatings via C,Hinsertion crosslinking for biomedical and bioanalytical applications (Review) Biointerphases 13, 010801 (2018); doi: 10.1116/1.4999786

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 30

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

Selectivity in CE

Strategies for method development and validation in CE - related to pharmaceutical and biological applications Hermann Wätzig, Matthias Degenhardt, Annette Kunkel Electrophoresis 19, 2695-2752 (1998)

Selectivity in CE

Strategies for method development and validation in CE - related to pharmaceutical and biological applications Hermann Wätzig, Matthias Degenhardt, Annette Kunkel Electrophoresis 19, 2695-2752 (**1998**)

=> needs an update!

Selectivity in CE; H.Wätzig, M. Degenhardt, A. Kunkel, Electrophoresis 19, 2695-2752 (1998), supplement to: Table 4. Buffer additives to enhance selectivity in CE, *ion pairing reagents*

cetyltrimethylammonium bromide (CTAB)	[191] ¹⁾
2-(N-Cyclohexylamino)ethanesulfonic acid	[192, 193]
(CHES)	
N-dodecyl-N,N-dimethyl-3-amino-1-	[194]
propanesulfonate (DAPS)	
dodecyltrimethylammonium chloride	[195, 196]
hexadecyltrimethylammonium bromide	[197]
hexadimethrine-bromide (polybrene)	[102, 195, 198, 199]
poly(diallyldimethyl)ammonium chloride	[102, 195]
(PDDAC)	
carboxylic acids (acetate, lactate, tartrate,	[102, 200]
hydroxyisobutyrate)	
carboxylated cyclodextrins	[201] ²)
hexane sulfonic acid	[102, 202]
perchlorate	[102, 190]
sodium n-alkyl sulphonates	[102, 203]
Tetrabutylammonium bromide (TBA)	Boyce and Haddad 2003
Hexamethonium bromide	Boyce and Haddad 2003
Diammonium hydrogen phosphate	Boyce and Haddad 2003
PDADMA	Boyce and Haddad 2003
Polyethyleneimine (PEI)	Boyce and Haddad 2003
Camphorsulfonate	Fillet et al. 2003

Christin Scheller

Boyce, Mary C.; Haddad, Paul R. (2003): *Electrophoresis* 24 (12-13), S. 2013–2022. Fillet, Marianne; Servais, Anne-Catherine; Crommen, Jacques (2003): *Electrophoresis* 24 (10), pp. 1499–1507.

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 33

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

Selectivity in CE; H.Wätzig, M. Degenhardt, A. Kunkel, Electrophoresis 19, 2695-2752 (1998), supplement to: Table 4. Buffer additives to enhance selectivity in CE, *ion pairing reagents*

cetyltrimethylammonium bromide (CTAB)	[191] ¹⁾
2-(N-Cyclohexylamino)ethanesulfonic acid	[192, 193]
(CHES)	
N-dodecyl-N,N-dimethyl-3-amino-1-	[194]
propanesulfonate (DAPS)	
dodecyltrimethylammonium chloride	[195, 196]
hexadecyltrimethylammonium bromide	[197]
hexadimethrine-bromide (polybrene)	[102, 195, 198, 199]
poly(diallyldimethyl)ammonium chloride	[102, 195]
(PDDAC)	
carboxylic acids (acetate, lactate, tartrate,	[102, 200]
hydroxyisobutyrate)	
carboxylated cyclodextrins	[201] ²⁾
hexane sulfonic acid	[102, 202]
perchlorate	[102, 190]
sodium n-alkyl sulphonates	[102, 203]
Tetrabutylammonium bromide (TBA)	Boyce and Haddad 2003
Hexamethonium bromide	Boyce and Haddad 2003
Diammonium hydrogen phosphate	Boyce and Haddad 2003
PDADMA	Boyce and Haddad 2003
Polyethyleneimine (PEI)	Boyce and Haddad 2003
Camphorsulfonate	Fillet et al. 2003

Christin Scheller

Boyce, Mary C.; Haddad, Paul R. (2003): *Electrophoresis* 24 (12-13), S. 2013–2022. Fillet, Marianne; Servais, Anne-Catherine; Crommen, Jacques (2003): *Electrophoresis* 24 (10), pp. 1499–1507.

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 34

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie **Selectivity in CE**; H.Wätzig, M. Degenhardt, A. Kunkel, Electrophoresis 19, 2695-2752 (1998), supplement to: Table 4. Buffer additives to enhance selectivity in CE, **surfactants**

several chiral surfactants	[53]
Triton X-100	[204]
sodium deoxycholate	[204]
СТАВ	[204]
SDS	[204]
Sodium tetradecyl sulfate (STS)	Fillet et al. 2003
Sodium hexadecyl sulfate (SHS)	Fillet et al. 2003
Dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB)	Fritz et a. 2002
Polyoxyethylene sulfate (Brij-S)	Pirogov und Shpigun 2003

Christin Scheller

Fillet, Marianne; Servais, Anne-Catherine; Crommen, Jacques (2003): *Electrophoresis* 24 (10), pp. 1499–1507.
Fritz, James S.; Breadmore, Michael C.; Hilder, Emily F.; Haddad, Paul R. (2002): *Journal of Chromatography A* 942 (1-2), S. 11–32.
Pirogov, Andrei V.; Shpigun, Oleg A. (2003): *Electrophoresis* 24 (12/13), pp. 2099–2105.

Selectivity in CE; H.Wätzig, M. Degenhardt, A. Kunkel, Electrophoresis 19, 2695-2752 (1998), supplement to: Table 4. Buffer additives to enhance selectivity in CE, **complexing reagents**

poly(ethylene glycol) (PEG 400, 4000, 20000)	[205 - 207]
EDTA	[208, 209]
crown ethers	[210]
heavy metal ions (Cu ²⁺ , Zn ²⁺ , Ca ²⁺)	[211]
Cu ²⁺	[212 - 214]
Cu^+, Ag^+	[215] ³)
Ca ²⁺	$[208, 215^{3}), 216]$
Pb ²⁺	[215]
Zn^{2+}	[196, 208, 213, 216, 217]
α, β, γ-CD's	[218 - 221, 222 ²)]
Borate	[20, 78, 223, 224, 225 ⁴), 226, 227 ⁴), 228 - 230]
PVP	Pirogov und Shpigun 2003
MoO_4^{2-} or WO_4^{2-}	Široká et al. 2011

Christin Scheller

Pirogov, Andrei V.; Shpigun, Oleg A. (2003): *Electrophoresis* 24 (12/13), pp. 2099–2105.

Široká, Jitka; Jáč, Pavel; Polášek, Miroslav (2011): *TrAC Trends in* Analytical Chemistry 30 (1), S. 142–152.

Comprehensive platform for protein-metal ion interactions

Generic methods for all relevant metal species
including reference values for a set of standard proteins AlHazmi et al., J. Pharm. Biomed. Anal., 2015, 107, 311–317.

Dr. Hassan AlHazmi

Selectivity in CE; H.Wätzig, M. Degenhardt, A. Kunkel, Electrophoresis 19, 2695-2752 (1998), supplement to: Table 4. Buffer additives to enhance selectivity in CE, **proteins**

Christin Scheller

Lloyd, David K.; Aubry, Anne-Françoise; Lorenzi, Ersilia de (1997): Selectivity in capillary electrophoresis: the use of proteins. In: *Journal of Chromatography A* 792 (1-2), pp. 349–369.

Selectivity in CE; H.Wätzig, M. Degenhardt, A. Kunkel, Electrophoresis 19, 2695-2752 (1998), supplement to: Table 4. Buffer additives to enhance selectivity in CE, miscellaneous

urea	[174, 234 - 237]
ethidinium bromide	[238, 239 ⁶⁾]
DMSO	[220]
2,10-ionene	Pirogov und Shpigun 2003

Christin Scheller

Pirogov, Andrei V.; Shpigun, Oleg A. (2003): Application of watersoluble polymers as modifiers in electrophoretic analysis of phenols. *Electrophoresis* 24 (1213), pp. 2099–2105.

Selectivity in CE; H.Wätzig, M. Degenhardt, A. Kunkel, Electrophoresis 19, 2695-2752 (1998), supplement to: Table 6. Chiral selectors, cyclodextrins

β-CD	[48, 51]
hydroxyethyl- and -propyl-β-CD	[48, 51, 278 - 281]
heptakis-2,6–di-O-methyl-β-CD	[48, 51]
heptakis-2,3,6-tri-O-methyl-β-CD	[48]
other β-CD derivates	[48]
β-CD polymer	[48, 282]
γ-CDs	[30, 48, 51, 283, 284]
hydroxypropyl-γ-CD	[48]
heptakis-2,6–di-O-methyl-γ-CD	[48]
α-CDs	[30, 48, 51]
heptakis-2,3,6-tri-O-methyl-α-CD	[48]
hydroxypropyl-α-CD	[48]
ODMS- γ-CD	Fillet et al. 2003

Christin Scheller

Fillet, Marianne; Servais, Anne-Catherine; Crommen, Jacques (2003): *Electrophoresis* 24 (10), pp. 1499–1507.

Selectivity in CE; H.Wätzig, M. Degenhardt, A. Kunkel, Electrophoresis 19, 2695-2752 (1998), supplement to: Table 6. Chiral selectors, noncyclic saccharides

non-cyclic oligosaccharides	[293, 294]
maltodextrin oligosaccarides	[295] ¹⁾
heparin	[296, 297]
carboxymethyl amylose sodium salt	[298]
methyl- and hydroxypropyl-cellulose	[298]
amyloses, laminaran, pullulan	[298]
Dextran sulfate	Boer et al. 1999

Christin Scheller

Boer, Theo de; Zeeuw, Rokus A. de; Jong, Gerhardus J. de; Ensing, Kees (1999): Selectivity in capillary electrokinetic separations. *Electrophoresis* 20 (15-16), pp. 2989–3010.

Selectivity in CE; H.Wätzig, M. Degenhardt, A. Kunkel, Electrophoresis 19, 2695-2752 (1998), supplement to: Table 6. Chiral selectors, miscellaneous

Quinine ¹⁾	[155]
10 new semi-synthetic surfactants	[52]
18-crown-6 tetracarboxylic acid	[48 ²⁾ , 306]
Camphorsulfonates	Boer et al. 1999
Calixarenes; (p-sulfonic calix[4]-arene)	Boer et al. 1999
Ergot alkaloids	Boer et al. 1999
Quinidine, other cinchonia alkaloids and	Fillet et al. 2003
derivates	
Tert-butyl-carbamoylquinine	Fillet et al. 2003
(-)-2,3:4,6-di-O-isopropylidene-2-keto-L-	Fillet et al. 2003
gulonic acid (DIKGA)	

Christin Scheller

Boer, Theo de; Zeeuw, Rokus A. de; Jong, Gerhardus J. de; Ensing, Kees (1999): *Electrophoresis* 20 (15-16), pp. 2989–3010.

Fillet, Marianne; Servais, Anne-Catherine; Crommen, Jacques (2003): *Electrophoresis* 24 (10), pp. 1499–1507.

Selectivity: a few remarks about CE-MS

Ivan Mikšík, J. Sep. Sci. 2019 (42), 385-397; DOI: 10.1002/jssc.201800817

=> sample pretreatment and interfacing remain main issues

The Neusüß Interface, K. Jooß, et al., Electrophoresis 2019 (40), 1061-65

B. Rudisch, T. Melzer, H. G. Graf, C. Huhn, ITP 2019, 1-4 SEP, Toulouse

Recent advantages: David D. Y. Chen, ITP 2019

Selectivity: two-dimensional electrophoresis (2-DE)

Selectivity: two-dimensional electrophoresis (2-DE)

X. Deng, et al., Electrophoresis 2012, 33,263-269

www.tu-braunschweig.de/Medien-DB/pharmchem/supporting_information-5.pdf

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 45

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

Selectivity: two-dimensional electrophoresis (2-DE)

Pharmazeutische Chemie

45 minutes HPLC-IEX MCE-SDS variable amount ZE BASED NO RATI \triangleleft ა. თ 2. FRACTION COLLECTION 1. CHARGE BASED **SEPARATION** Technische 29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 49 Universität Wätzig et al Braunschweig Institut für Medizinische und

Pharmazeutische Chemie

Conventional vs. Microchip-CE-SDS (MCE-SDS)

Significantly shorter separation channel

Significantly shorter analysis time

Patent 18700637.4 - 1020

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 52

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

Patent 18700637.4 - 1020

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 53

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

2D-separation of a mixture of model proteins

Pharmazeutische Chemie

2D-separation of a mixture of model proteins

Process analysis – superimposed 2D separations

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 58

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

2D separation of Sf9 cytosol lysate

Sf9 cytosol lysate: 3 HPLC separations followed by MCE

Physicochemical Properties of Proteins

Institut für Medizinische und Pharmazeutische Chemie

Collagen: main constituent of connective tissues

- skin
- bones
- tendons
- etc.

Human skin, from Klafubra, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5409304

Collagen-Structure: Triple-Helix

Dr. Imke Oltmann-Norden

Source: M.D. Shoulders and R.T. Raines "Collagen Structure and Stability" Annu. Rev. Biochem. 2009; 78:929-958

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

Collagen: fleece, magnified

with friendly permission from Mike Barbeck, botiss biomaterials GmbH, botiss.com

Collagen: fleece and implants, magnified

with friendly permission from Mike Barbeck, botiss biomaterials GmbH, botiss.com

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 66

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

CZE: rat tail collagen solved in acetic acid

Solution process: in 50 mM acetic acid pH 3, stirring with ice cooling (12 h)

CZE: fleece collagen solved in acetic acid

Solution process: 50 mM acetic acid pH 3, sonication (12 h, without temperature control)

Dissolved fleece collagen samples in 7 % SDS-PAGE

Collagen: CE-SDS

Selectivity, other proteins: (brief) IDP story

Example Intrinsically Disordered Protein (IDP):

Thylakoid soluble phosphoprotein TSP9¹ Song J, Lee MS, Carlberg I, Vener AV, Markley JL (December 2006). Biochemistry. **45** (51): 15633–43.

By Jawahar Swaminathan and MSD staff at the European Bioinformatics Institute http://www.ebi.ac.uk/pdbe-srv/view/images/entry/2fft600.png, https://commons.wikimedia.org/w/index.php?curid=5877319

Selectivity, other proteins: (brief) IDP story

Shaji, Divya, Intrinsically disordered proteins (idps) in human diseases: a review. *Int. Res. J. Pharm. 2018, 9 (11)*

Example Intrinsically Disordered Protein (IDP):

Thylakoid soluble phosphoprotein TSP9¹ Song J, Lee MS, Carlberg I, Vener AV, Markley JL (December 2006). Biochemistry. **45** (51): 15633–43.

By Jawahar Swaminathan and MSD staff at the European Bioinformatics Institute http://www.ebi.ac.uk/pdbe-srv/view/images/entry/2fft600.png, https://commons.wikimedia.org/w/index.php?curid=5877319

Physicochemical Properties of Proteins

Institut für Medizinische und Pharmazeutische Chemie

Antibody domains VL and VH: order?

Overview of protein structures (http://absoluteantibody.com; 2015, 2019)

Antibody domains VL and VH: order?

Overview of protein structures (http://absoluteantibody.com; 2019)

Antibody domains VL and VH: order?

Stability ≤ 25 °C:

Infliximab: 6 months

Omalizumab, Secukinumab: 4 hours

V. Stahl, Deutsche Apothekerzeitung 28/2019

Overview of protein structures (http://absoluteantibody.com; 2019)

Intrinsically disordered proteins: ensembles of conformers

Comparison of the energy landscape of a folded native protein (A) and an intrinsically disordered protein (B). *x-y-axes: possible* conformations, z-axis: Gibbs's Free Energy (Free Enthalpy); Fig 34 in:

Howton, T.C., Zhan, Y.A., Sun,Y. & Mukhtar, M.S. Intrinsically disordered proteins: controlled chaos 8 or random walk. Int J Plant Sci 6: 61 52-57 (2015). doi:10.4081/pb.2015.6191

AtHIRD11, an example intrinsically disordered protein

AtHIRD11 with 7 Cu²⁺ ions bound

CZE of AtHIRD11 in Tris buffer 7.4, 30 mM, λ = 200 nm

M. Nachbar, et al., Journal of Plant Physiology 2017, 216, 219–228

Markus Nachbar, PhD thesis, TU Braunschweig 2017 https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00065295

Selectivity, other proteins: viruses

Partly quite flexible on the outside, IDP-like (!)

Jim Baggen1,2, Hendrik Jan Thibaut1,2, Jeroen R. P. M. Strating1 and Frank J. M. van Kuppeveld1* Nature Reviews | Microbiology Reviews volume 16 | june 2018 | 369-381 https://doi.org/10.1038/ s41579-018-0005-4

Success story SDS-PAGE and CE-SDS

A. Guttman, J. Nolan, Analytical Biochemistry 221, 285-289 (1994)

Rustandi, R. R., Washabaugh, M. W., Wang, Y., *Electrophoresis* 2008, *29*, 3612–3620.

Lacher, N. A., Roberts, R. K., He, Y., Cargill, H., Kearns, K. M., Holovics, H., Ruesch, M. N., *J. Sep. Sci.*, 2010, 33, 218–227.

Nunnaly, B., Park, S. S., Patel, K., Hong, M., Zhang, X., Wang, S. X., Rener, B., Reed-Bogan, A., Salas-Solano, O., Lau, W., Girard, M., Carnegie, H., Garcia-Canas, V., Cheng, K. C., Zeng, M., Ruesch, M., Frazier, R., Jocheim, C., Natarajan, K., Jessop, K., Saeed, M., Moffatt, F., Madren, S., Thiam, S., Altria, K., *Chromatographia* 2007, *66*, 955–961.

Cari Sänger-van de Griend, CE-SDS method development, validation, and best practice—An overview, Electrophoresis 2019, DOI 10.1002/elps.201900094

Precision and possible insight

RSD% = 20%

RSD% = 10%

CE-SDS – Intermediate precision of %peak areas Kahle, J., Maul, K. J., Wätzig, H., *Electrophoresis 2018, 39, 311–325.*

Pharmazeutische Chemie

Success of CE-SDS: transfer to other proteins

Pharmazeutische Chemie

Method: CE-SDS

Success of CE-SDS: transfer to other proteins

A. Guttman, J. Nolan, Analytical Biochemistry 221, 285-289 (1994)

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 89

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

S. Redweik, C. Cianciulli, M. Hara, Y. Xu, H. Wätzig, Electrophoresis, 2013, 34, 1812–1819.

Examples for different sizes of one protein: BSA

method	parameter adjustment	protein concen- tration	measuring condition	size (nm)	source
Atomic force microscopy	tapping mode, resonance frequenz ca. 10 kHz, scan rate 1 Hz	5 µg/ml	aqueous solution, pH 4,5 (near IEP)	max. height:	S. Demanèche et al., 2009
Dynamic light scattering	514 nm, scattering angle 90°, parallel mode	1 mg/ml	pH 7, 24°C	radius: 3.8	A. Adel et al., 2008
Dynamic light scattering	488 nm, scattering angle 90°	0,02 mg/ml	phosphate buffer pH 7,2, ionic strength 0,02	radius: 2,7±0,1	R. E. Tanner et al., 1982
Small angle neutron scattering	mean wavelength: 6Å, scattering angle 90°	0,01 mg/ml	D ₂ O, acetate buffer pH 5,4, ionic strength of 0,5 M NaCl, 30°C	prolate ellipsoid: a=7,02±0,51, b=2,22±0,08	S. Chodankar et al., 2008
29 September 2019 Wätzig, H. et al. Protein Analysis by CE: Successes and Challenges Page 93 Wätzig et al.					zig et al.
Institut für Medizinische und					

Pharmazeutische Chemie

Size measurements: overall variability (SDS-PAGE and CE-SDS)

1 g protein binds 1 to 1.4 g SDS (+- 20% is normal variability)

Friedrich Lottspeich, Joachim Engels: *Bioanalytics*, Wiley 2018

WILEY-VCH

Edited by Friedrich Lottspeich and Joachim W. Engels

Bioanalytics

Analytical Methods and Concepts in Biochemistry and Molecular Biology

Size measurements: overall variability (SDS-PAGE and CE-SDS)

1 g protein binds 1 to 1.4 g SDS (+- 20% is normal variability)

Friedrich Lottspeich, Joachim Engels: *Bioanalytics*, Wiley 2018

Mechanistic models for size-based separations:

Heller, C., *J. Chromatogr. A* 1995, 698, 19–31. Guttman, A., *Electrophoresis* 1996, *17*, 1333–1341.

WILEY-VCH

Edited by Friedrich Lottspeich and Joachim W. Engels

Bioanalytics

Analytical Methods and Concepts in Biochemistry and Molecular Biology

A. Guttman, J. Nolan, Analytical Biochemistry 221, 285-289 (1994)

Size measurements: overall variability (SDS-PAGE and CE-SDS)

Friedrich Lottspeich, Joachim Engels: Bioanalytics, Wiley 201

1 g protein binds 1 to 1.4 g SDS (+- 20% is normal variability)

Few proteins show stronger deviations; reasons?

Sample pre-treatment? Sample buffer or running buffer, pH? Additional interactions to the gel matrix? Influence of Glycosylation? Ladder? Calculation?

Friedrich Lottspeich and Joachim W. Engels

Analytical Methods and Concepts

in Biochemistry and Molecular Biology

Bioanalytics

Edited by

WILEY-

SDS-PAGE: Buffer compositions

	Original Laemmli *	Biorad *	Sigma *
Tris-HCI [mmol/I]	62.5	32.9	62.5
Glycerol [%]	10.0	13.15	10.0
SDS [%]	2.0	1.05	2.0
Bromophenolblue [%]	0.001	0.005	0.002
β-mercaptoethanol [%]	5.0	5.0	5.0
рН	6.8	6.8	6.8

* all data refer to the final concentration in the sample

SDS-PAGE: Comparison of sample buffers

	MW of proteins [kDa]			
	Phosphorylase	BSA	Ovalbumin	Carbonic anhydrase
manufacturers specification	97.40	66.00	42.00	29.00
10min 70°C Biorad	99.68	73.26	46.88	31.45
5min 95°C Biorad	99.61	73.19	48.25	32.00
10min 70°C Sigma	96.40	69.17	43.68	28.65
5min 95°C Sigma	100.12	71.99	45.31	32.00

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 99

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

SDS-PAGE: Comparison of sample buffers

Overview: previous results

Maurice: ß-ME vs. DTT

Maurice 70°C 10 min 710 mM ß-ME 10 mM DTT Single Proteins: 0.5 mg/ml Mix A+B: 0.1 mg/ml

CE-SDS vs. SDS-PAGE

A comparative study of molecular mass determination methods

Rebecca Wiesner, Christin Scheller, Holger Zagst, Hermann Wätzig,

Imke Oltmann-Norden

CE Pharm Young Scientist Session, September 30th 2019

SDS-PAGE and CE-SDS: preliminary conclusions (part 1)

 Sample pre-treatment, sample buffer or running buffer: only minor influences on apparent molecular mass

SDS-PAGE - data evaluation

y = mx + b $y = \log MW$ $x = R_f \text{ of the protein band}$

 $\Leftrightarrow MW = 10^{y}$

SDS-PAGE - data evaluation

Linear regression

One interesting finding

[2] A. Guttman, J. Nolan, Analytical Biochemistry 221, 285-289 (1994)

	CE-SDS			SDS-PAGE		
	Guttman et al.	Wätzig- Maurice	Sigma [1]	Guttman et al.	Wätzig	Sigma [1]
Lysozyme	15.9	14.8	14.3	< 29	n/a	14.3
Myoglobin	17.9	15.4	17.2	< 29	n/a	17.2
Carbonic Anhydrase	29.7	31.6	29	28.8	28.5	29
Ovalbumin	45.5	45.3	45	42.8	44.9	45
BSA	71.1	69.8	66	62.5	71	66
Phosphorylase B	89.7	103.8	97.4	81.6	97.3	97.4
ß-Galactosidase	116.2	117.4	116	106.7	106	116
α-Macroglobulin	188.8	257.3	180	178	117.3	180

[1] Sigma Catalog (1994) Sigma Chemical Co.

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

Overview: previous results

Maurice: Macroglobulin

α-Macroglobulin: a homotetramer

A. R. Wyatt et al., PLOS ONE | DOI:10.1371/journal.pone.0130036 , 2015

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 110

Maurice: Macroglobulin

SDS-PAGE: Macroglobulin

SDS-PAGE - 10 min 70°C (10% gel)

- 1. Ladder
- 2. Mixture D
- 3. Mixture E
- 4. Myoglobin
- 5. Carbonic anhydrase
- 6. Ovalbumin
- 7. BSA
- 8. Phosphorylase
- 9. Galactosidase
- 10.Macroglobulin

SDS-PAGE and CE-SDS: preliminary conclusions

- Sample pre-treatment, sample buffer or running buffer: only minor influences on apparent molecular mass
- Ladders and calculation algorithms make a difference
- Limited suitable size range
- Typically no major discrepancies
- Sometimes observed discrepancies are possibly only apparent (particular properties of a few proteins)

Summary and Conclusions

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 114

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

Thank you very much!

Hermann Wätzig, Holger Zagst, Julia Kahle, Matthias Stein, Rebecca Wiesner, Mais Olabi; and Imke Oltmann-Norden, Kai-Jorrit Maul-Köhler, Christin Scheller

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 115

Thank you very much!

Hermann Wätzig, Holger Zagst, Julia Kahle, Matthias Stein, Rebecca Wiesner, Mais Olabi; and Imke Oltmann-Norden, Kai-Jorrit Maul-Köhler, Christin Scheller

Outline

Proteins: classification

antibodies and enzymes, collagen, IDPs, viruses, etc. adsorption selectivity; buffers, CE-MS; 2-DE

Case study: collagen

Case study: AtHIRD11, an intrinsically disordered protein (IDP)

Protein size characterization

Preliminary conclusions and outlook

Wätzig et al. Institut für Medizinische und Pharmazeutische Chemie

29 September 2019 | Wätzig, H. et al. | Protein Analysis by CE: Successes and Challenges | Page 117