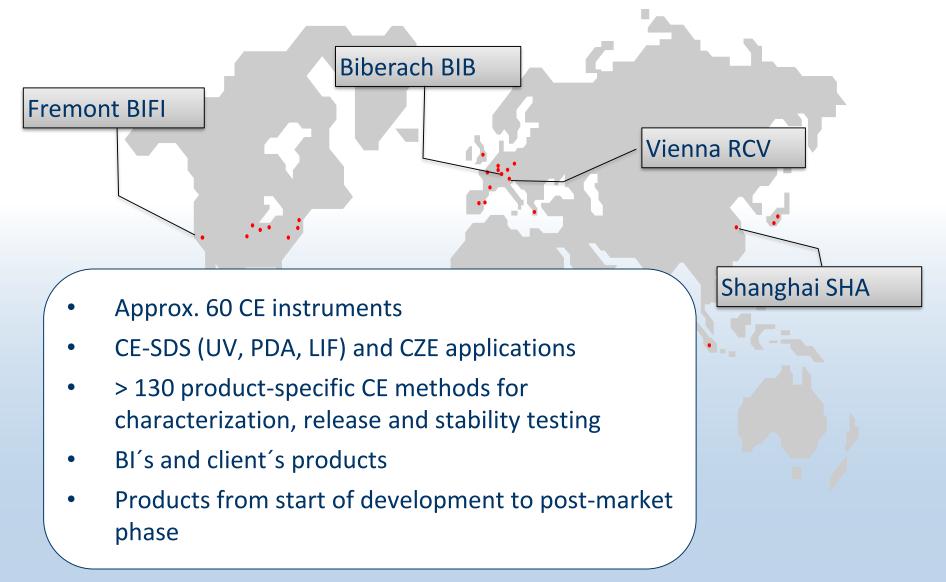
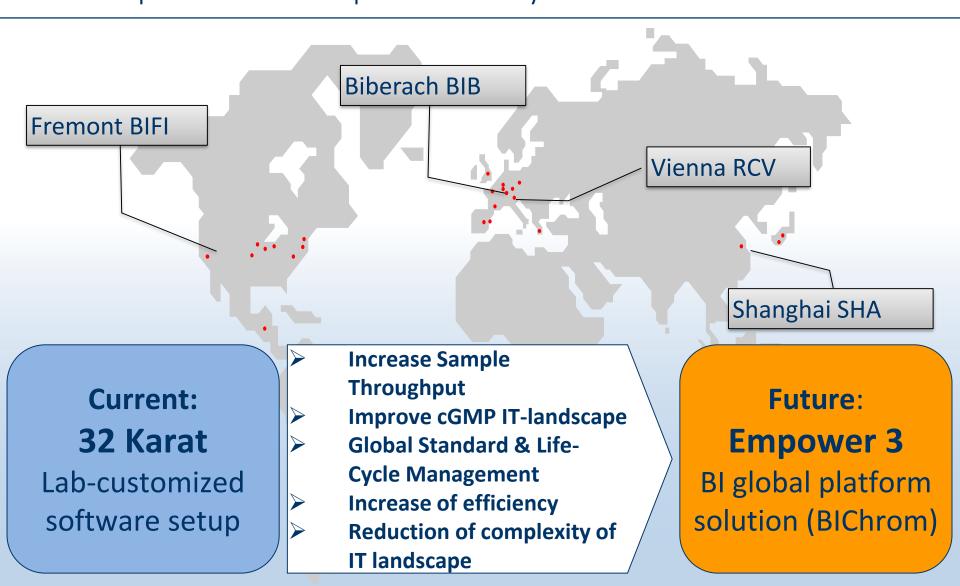
Implementation of Empower 3 for CE instrument control, data acquisition and reporting in a global, multi-product QC environment

Dr. Edith Binder, Manuel Birke, Anja Brauchle, Marian Gruener, Tina Kohn, Annette Sieron, Johannes Sommer, Kerstin Mueller


Overview

- 1. Concept and rationale of the software switch
- 2. Comparability strategy 32 Karat / Empower 3
 - I. Instrument qualification
 - II. Test case
 - III. Bridging
- 3. Product-specific implementation

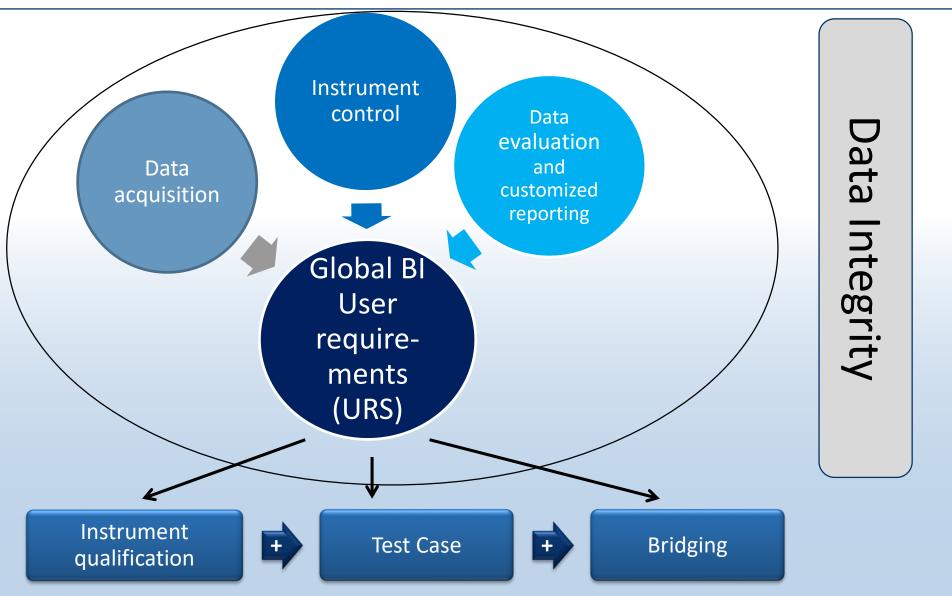


Concept and rationale

CE applications in a global, multi-product landscape at BI Biopharma

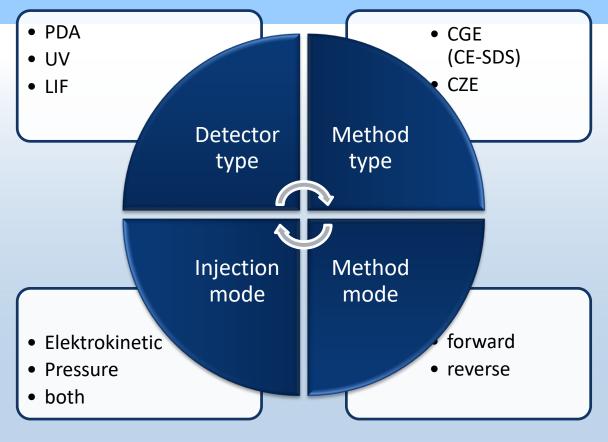
Concept and rationale Global implementation of Empower 3 for CE systems

Concept and rationale Implementation overview


ROLL-OUT: Client Global / Local /product specific notification switch 32 Karat / Empower **COMPARABILITY** Preparation of **GMP System Application** Test: Proof of concept

Start of project: 2016 ... Start of role-out: 2018 ... ongoing

Software switch Comparability strategy



Overview

Comparability strategy Definition of User Requirements (URS)

- Definition of routine workflow requirements
- Definition of **4 representative CE method types** from a set of > 130 product-specific test methods

Comparability strategy Three stages

I. Instrument qualification

II. Test Case

III. Bridging

"Standard" CE instrument qualification

Qualification of specific functionalities

- Control of specific instrument parameters by Empower
- Switch process 32Karat <-> Empower

Test performance of representative methods

Simulation of complete analysis process and testing of URS
Show driver functionality

Proof of comparable method performance

Evaluation by **Accuracy / precision approach**

COMPARABILITY

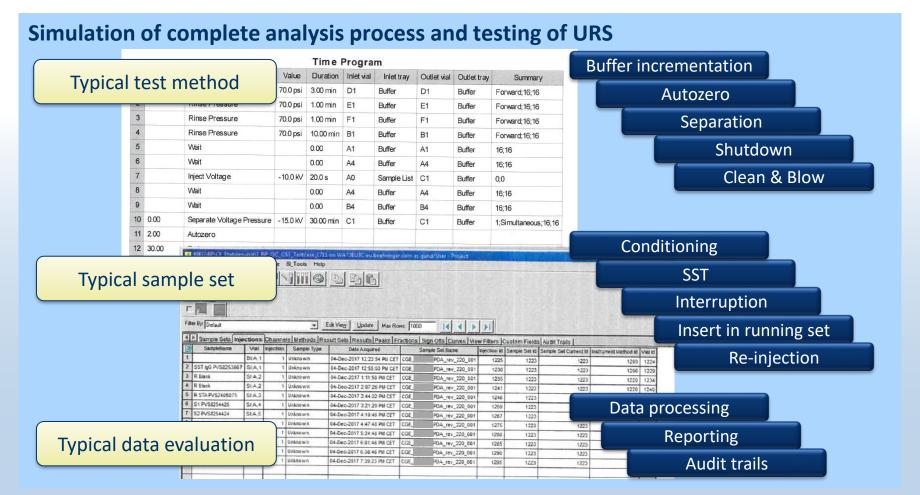
I. Instrument qualification

Two representative CE instruments

"Standard" qualification

- Installation qualification (IQ)
 32Karat installation
 Empower and LAC/E installation
- Operation qualification (OQ) Vendor OQ3 using software Karat32 by service technician
- Performance qualification (PQ)
 PQ for 32Karat using IgG control standard

Qualification of specific processes


- Instrument control by Empower Comparability of defined OQ3 parameters using Empower control
- Qualification of software switch between 32 Karat<-> Empower In routine for qualification and calibration purposes a software switch is necessary!

II. Test case

Performance of 4 representative test methods

Visually comparable electropherograms of representative reference standard material

II. Test case – Issues and workarounds

PDA calibration and IQ/OQ by vendor technician only by 32Karat

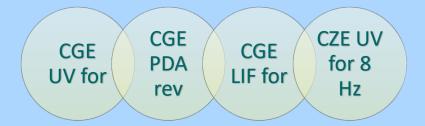
- Requirement of 32Karat in addition to Empower
- Switch in routine operation required

Qualification of Software switch procedure

TCA (32Karat) required for all validated test methods

- Implementation of capillary length in Empower
- Limited functionality due to need for custom fields for VCA calculation

Noise calculation (SST criterion)


- Difference in noise calculation between 32Karat and Empower
- Replacement of "threshold" by "peakto peak noise"

Qualification of new custom fields; adapt routine workflow

Re-validation of test methods with "threshold" criterion in SST. S/N criterion for new methods.

III. Bridging concept

Performance using 4 representative methods

Parameters covered by Bridging

Method Type

Method mode (forward/reverse)

Detector type

Injection type (pressure/elektrokinetic)

Other parameters are not control related
 or covered by I. Instrument qualification
 or covered by II. Test case

Other parameters

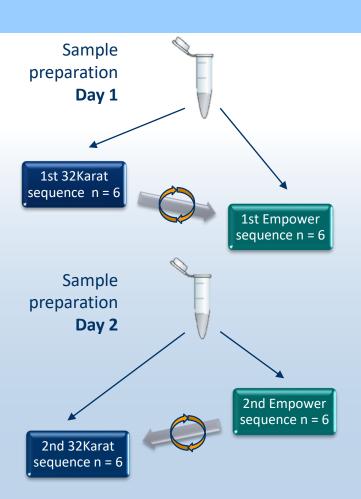
Aperture

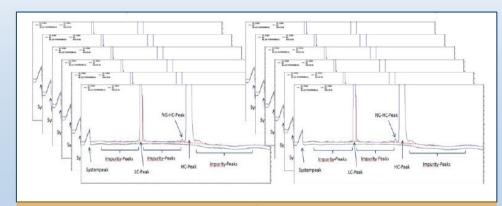
Reduced/non-reduced sample preparation

Capillary length

Wavelength

Sample storage temperature

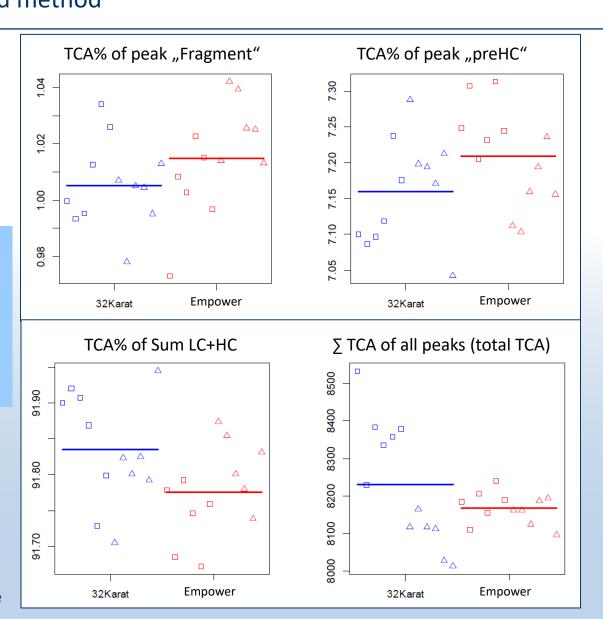

Data acquisition


III. Bridging – CGE UV forward method

Experimental setup

One CE instrument - 2 identical sample preparations - 4 identical consecutive sequences

#	Preparation Date	Test Documentation	Sequence Name	Sequence Start Date	Software
1	23.04.18	RL3016/582	CGE-MaK0038	23.04.18	32Karat
2		RL3016/582	180423_RL3016_582	23.04.16	BIChrom
3	24.04.18	RL3016/583	180424_RL3016_583	24.04.19	BIChrom
4		RL3016/583	CGE-MaK0040	24.04.18	32Karat


12 test results – 32Karat 12 test results - Empower

Comparability strategy III. Bridging – CGE UV forward method

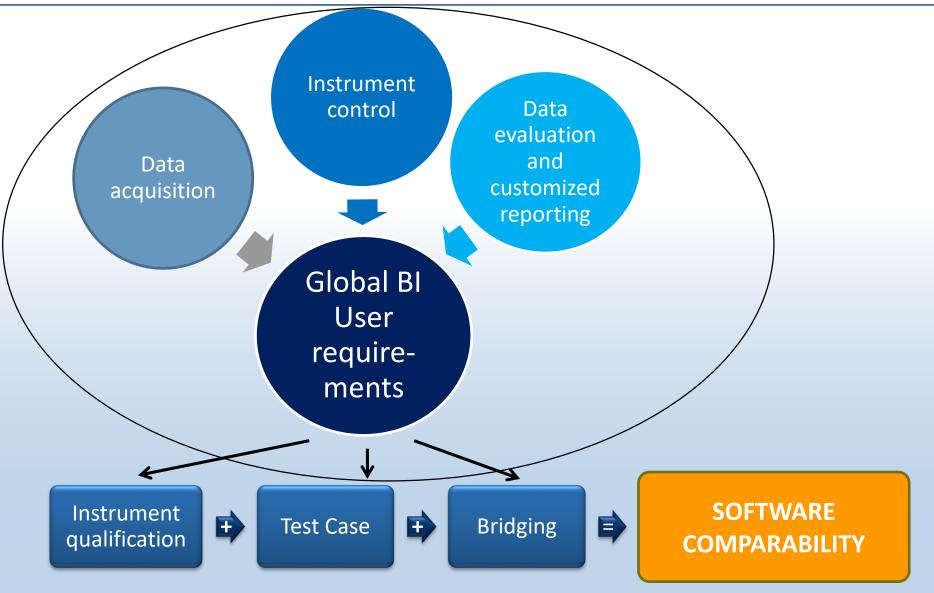
Statistical comparison n = 12 per software

- Visualization of data points
- Evaluation against acceptance criteria based on historical data

Squares: 1st sequence Triangles: 2nd sequence

III. Bridging – CGE UV forward method

Data evaluation


SST criteria and parameters relevant for reporting, e.g. %TCA, total TCA, USP resolution, migration time

Method	Parameter	Peak	Mean difference	Criterion 2 x SD _{hist}	ACCURACY Mean Karat - mean BIChrom < 2 x SD _{hist}	
CGE UV	%TCA	Fragment pre-HC LC+HC	0.010 0.049 0.059	0.073 0.183 0.228	0.010 < 0.073 0.049 < 0.183 0.059 < 0.228	pass pass pass
	Total TCA	All	64	2567	64 < 2567	pass
	USP resolution	Between HC and pre-HC	0.018	0.060	0.018 < 0.060	pass

All criteria passed for all 4 representative methods.

Method	Parameter	Peak	CV 32 Karat [%]	CV BIChrom [%]	2xCV _{hist} [%]	Precision CV% 32Karat < 2 · CV% _{Hist} (For information only)	Precision CV% BIChrom < 2 · CV% _{Hist}	
CGE UV	%TCA	Fragment pre-HC LC+HC	1.502 1.003 0.082	1.860 0.940 0.067	7.361 2.579 0.249	1.502 < 7.361 1.003 < 2.579 0.082 < 0.249	1.860 < 7.361 0.940 < 2.579 0.067 < 0.249	pass
	Total TCA	All	2	1	29	2 < 29	1 < 29	pass
	USP resolution	Between HC and pre-HC	1.020	0.212	3.957	1.020 < 3.957	0.212 < 3.957	pass

Comparability strategy Overview

Product-specific role-out for a typical CE-SDS application

Product-specific role-out

General CE documents – Implementation of Empower

- **CE Maintenance**
- **CE PQ document**
- **CE Handling**
- General SST document

⊢ Method validation

Re-validation of threshold/peak noise, if established as SST criterion

Test method

Setup of method and report in Empower

> Revision of SOP to adapt to Empower workflow

Regulatory documents

Mainly marketed drugs

2.1.S.4.2 Analytical **Procedures**

2.1.4.3 Validation of analytical procedures

Acknowledgement to the CE Empower Team

Manuel Birke Anja Brauchle Marian Gruener Brigitte Gund Tina Kohn Kerstin Müller Yao Shu Annette Sieron Johannes Sommer Patricia Wagner

Thank you for your attention!