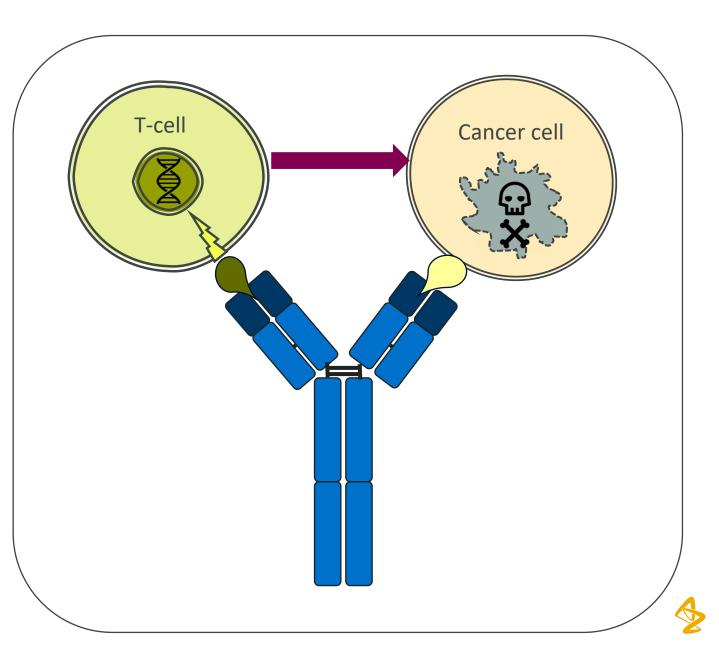


Bridges over Multiple Biotech Corridors

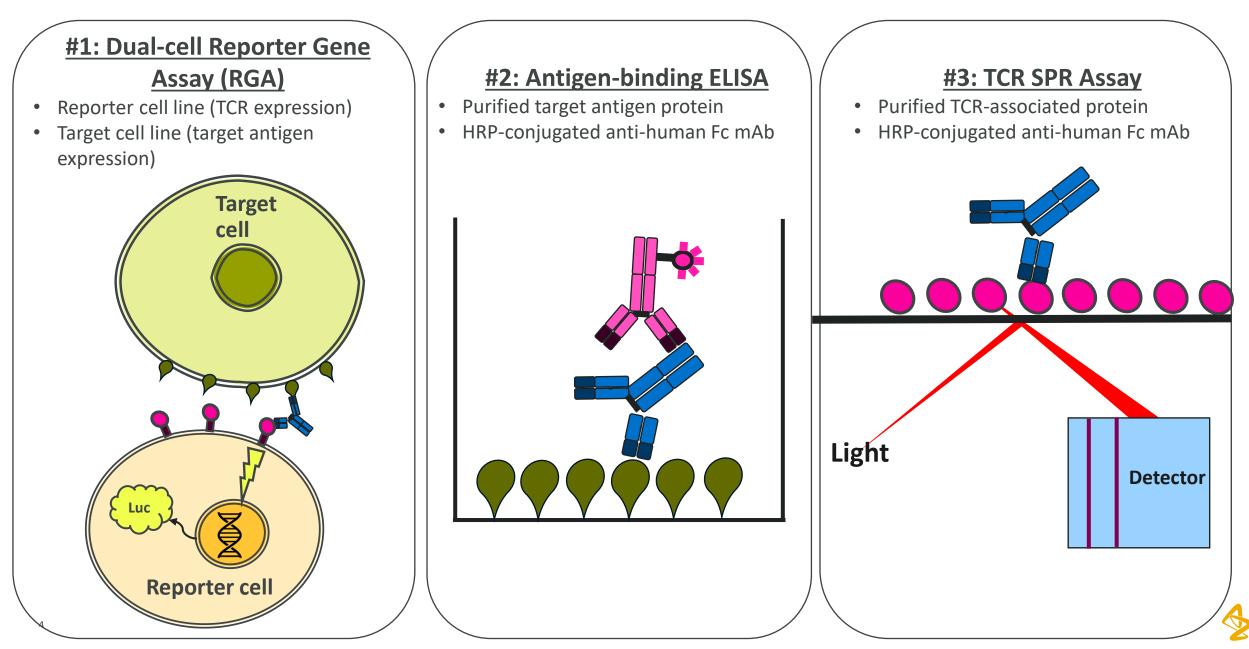
Dylan Weil – Senior Scientist; Analytical Sciences; AstraZeneca

Background

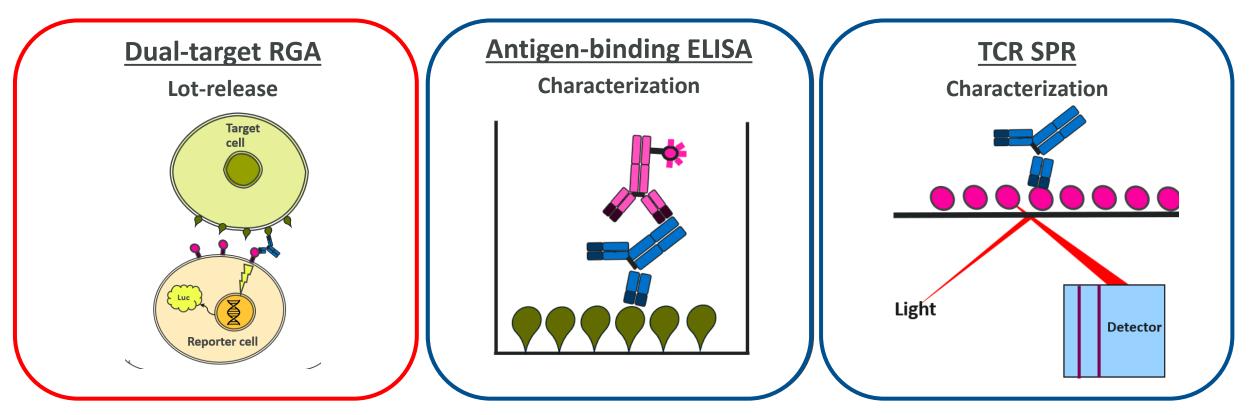
T-cell engager mechanism-of-action


Acquired from startup and a partnered CMO

Manufacturing and analytical testing remained at CMO

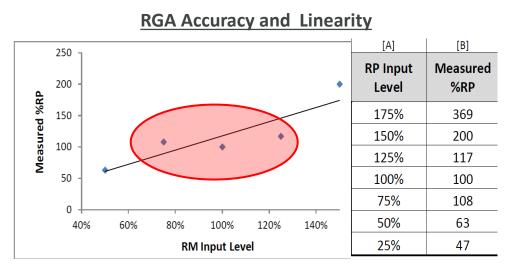

MoA: T-cell Engager

- Simultaneously binds T-cells and cancer cells expressing a target antigen
- Activates T-cells to kill cancer cells

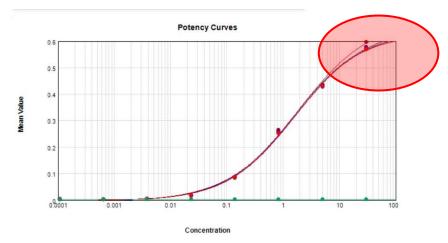

Fc effector function null

3 potency assays on lot-release and stability spec when acquired

Future strategy: Only RGA method on specification for potency

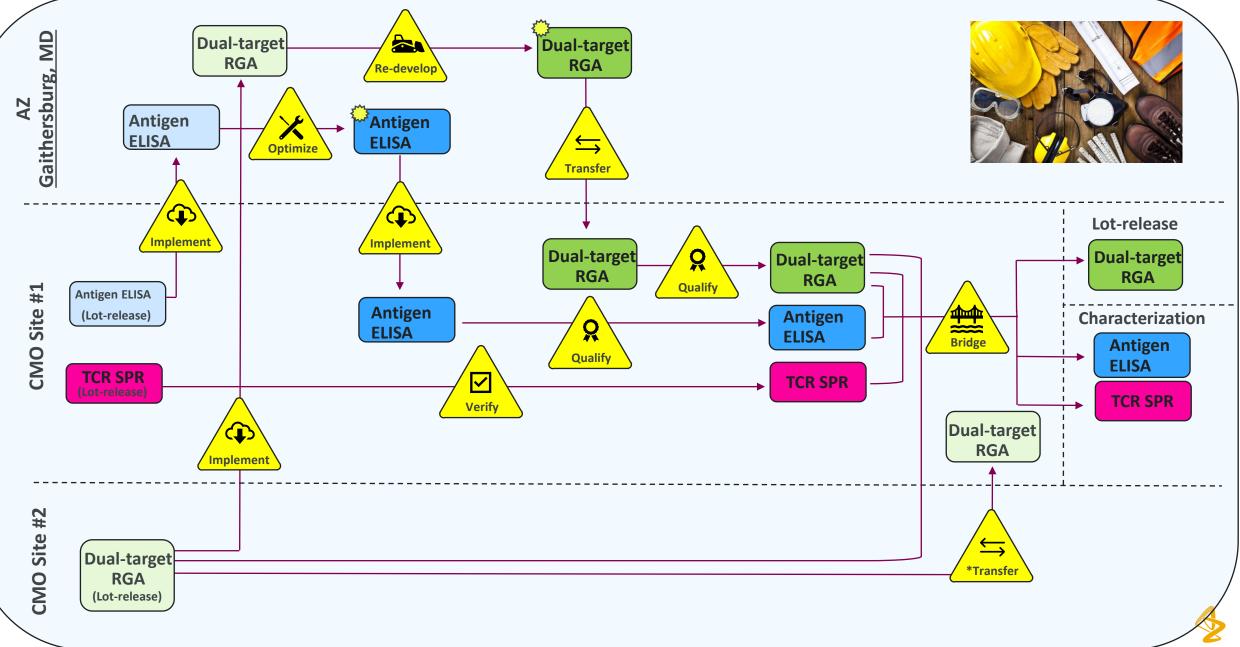

How:

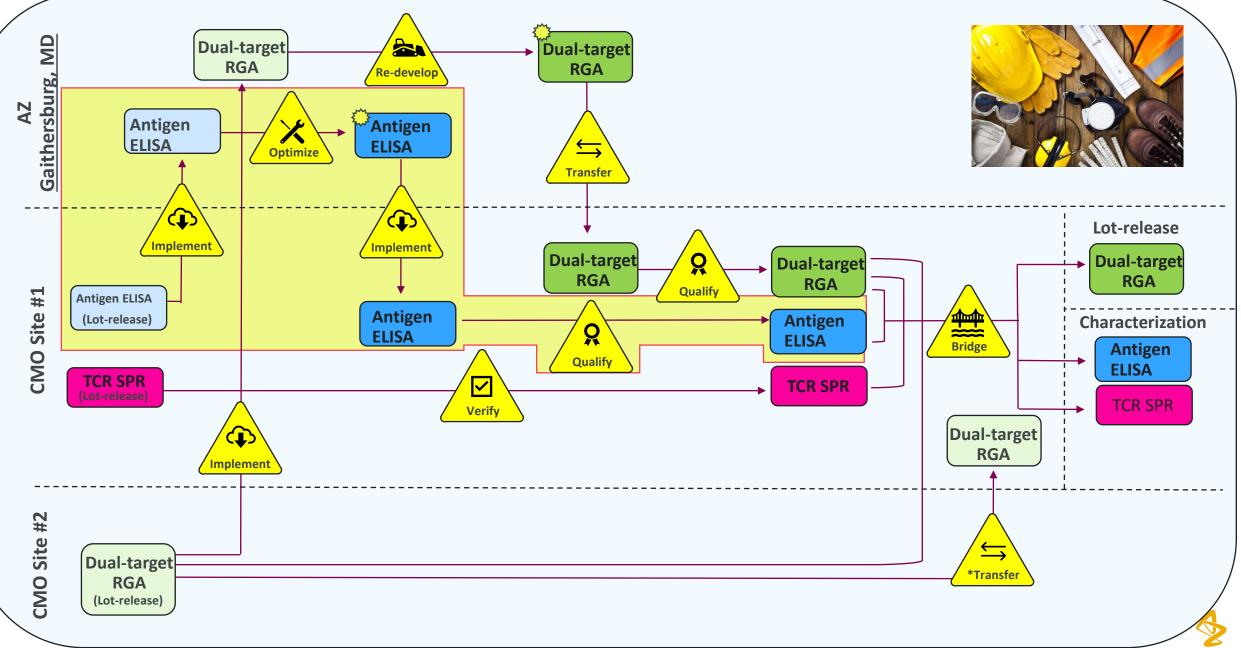
- 1. Defend that RGA is cell-based and fully MoA-reflective. Binding assays are non-cell based and partially MoA-reflective.
- 2. Use *method bridging* to demonstrate RGA and binding assays are equivalent in method performance


Multiple challenges to address before and during bridging study

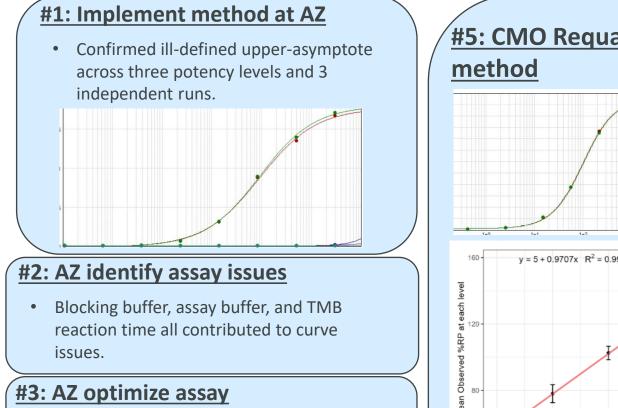
- 1. RGA performance not suitable for late-stage/commercial
- 2. Antigen-binding ELISA recurring system suitability failures
- 3. Simultaneous parallel process/formulation changes and CQA evaluations

4. Assays located at 2 different CMO sites



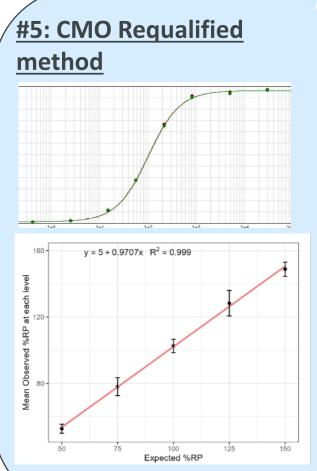

6

Blueprint to new potency assay strategy



Antigen-binding ELISA Optimization

Optimizing and re-qualifying Antigen-binding ELISA

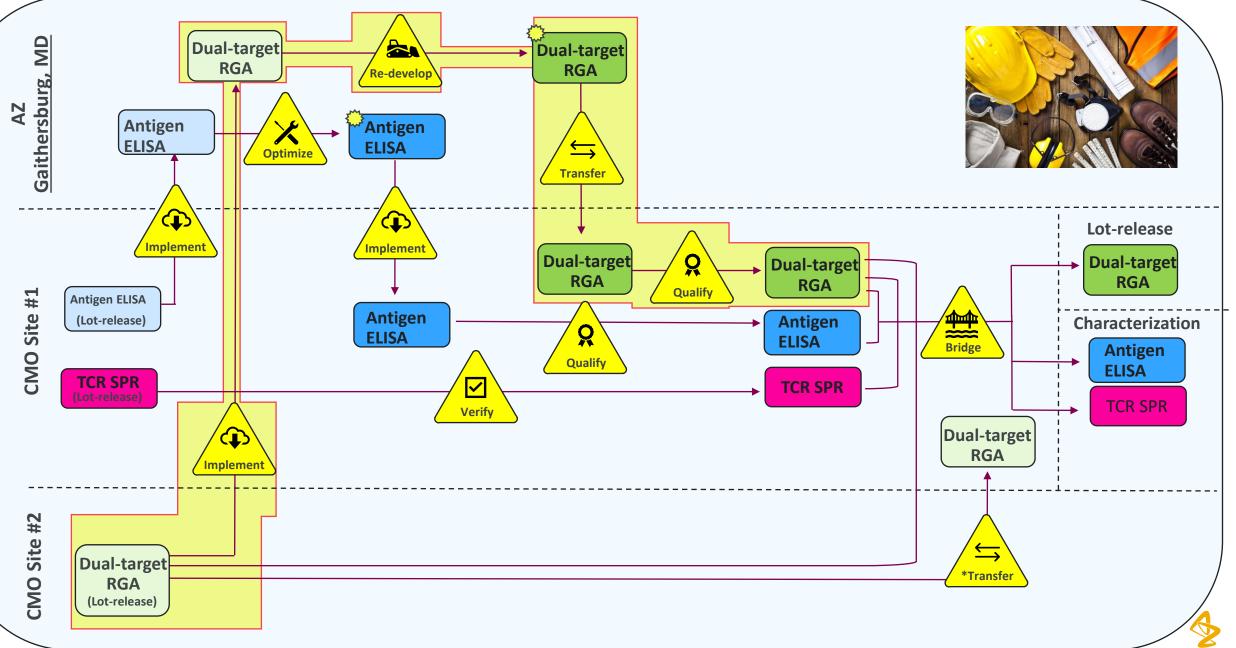

Antigen-binding ELISA optimization and re-qualification

• Replaced buffers, increased incubation times, changed dilution scheme

#4: Implement at CMO

• CMO updated SOP and performed runs to confirmed improved performance

Parameter	Analysis	Result
Linearity	R ² from linear regression	Pass
Accuracy	90% Cls ¹ of mean accuracies across potency range	Pass
Repeatability	%CV of potency results ²	Pass
Intermediate Precision	95% CI from VCA ³ model fitted to run-to-run variability	Pass
Range	Linearity, accuracy, and precision criteria	Pass
Specificity	Curve visualization	Pass
Stability-indicating	Potency trend across stability timepoints	Pass


¹CI = confidence interval

²Potency results were generated from independent sample replicates prepared at the nominal assay starting concentration and tested on the same day

³ VCA = variance component analysis

RGA Re-development

Optimizing and re-qualifying RGA

RGA re-development, transfer, and qualification

#1: Implement method at AZ

3 independent runs according to current SOP across 3 potency levels.

#2: Re-developed assay (use of DoE key to efficient redevelopment)

- Updated plate layout
- Optimized cell densities/ ratios and assay incubation time
- Changed luminescence reagent

#3: Transferred re-developed assay

Criteria

Study Design

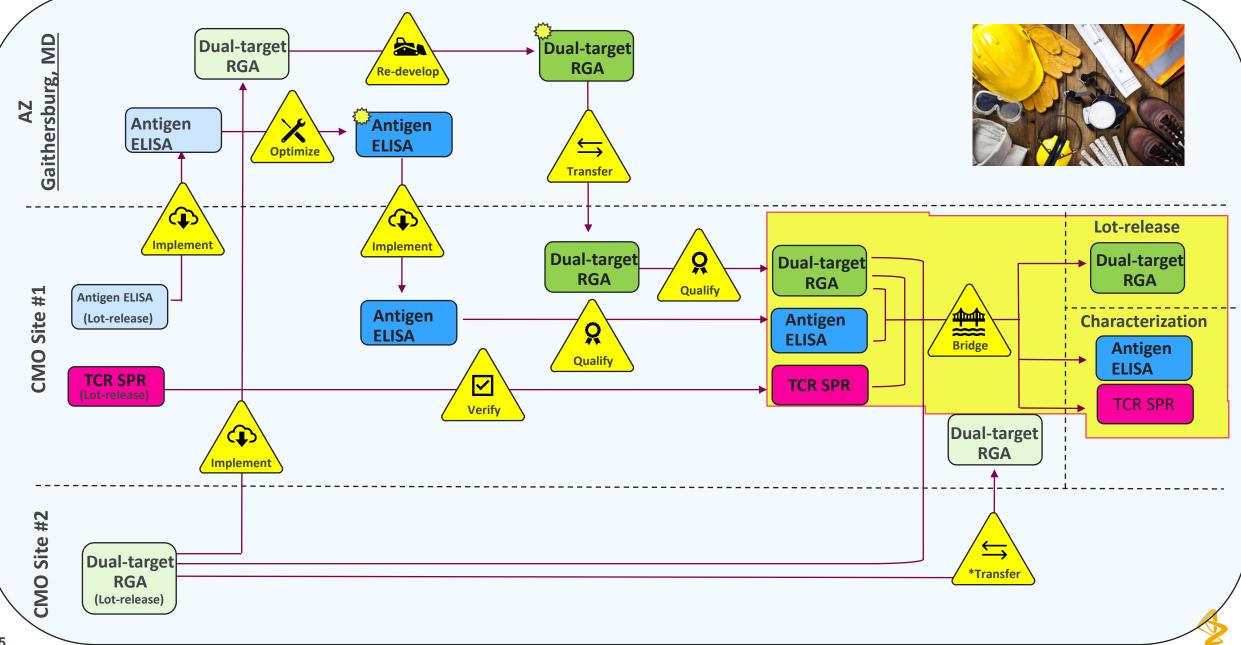
- One analyst at AZ performing 6 runs across 3 potency levels
- Two analysts at CMO performing 4 runs each across same 3 potency levels.
- Mean difference in accuracy and CIs calculated across potency levels and between sites.

1.	90% CI of mean accuracy difference
	between sites and at each potency level
	must be within specified upper/lower
	bounds.

- 2. 90% CI of mean overall accuracy difference between sites must be within specified upper/lower bounds.
- 3. Report precision

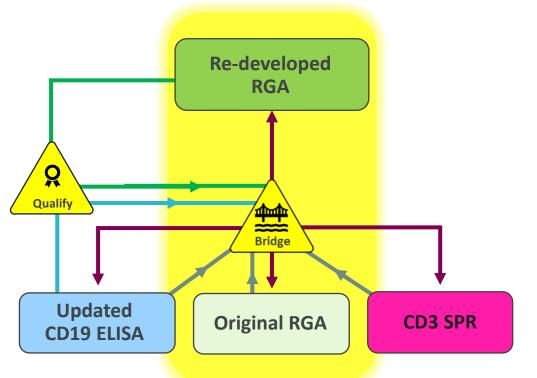
Potency level	CI lower bound result	CI upper bound result
Level #1 (50% RP)	Pass	Pass
Level #2 (100% RP)	Pass	Pass
Level #3 (150% RP)	Pass	Pass
Overall	Pass	Pass

			nn rhr		11111	
				/		
			/	-		
			/			
			/			
		/	/			
		/				
•			35	101	1000	
175 -	-		1 1 1 1			
	У	= 1.7933 +	1.0159x R ²	= 0.989		T
9 150 -					r	
						1
ach le						
at each 125-						
- 521 each le						
erved %RP at each l						
) Observed %RP at each i		I	Ī	/		
1 %RP		ł	Ī			
- 125 - Mean Observed %B at each i	Ţ	ł	-			


¹CI = confidence interval

³ VCA = variance component analysis

#4: CMO qualified assay							
	Parameter	Analysis	Result				
	Linearity	R ² from linear regression	Pass				
	Accuracy	90% Cls ¹ of mean accuracies across potency range	Pass				
y = 1.7933 + 1.0159x R ² = 0.989	Repeatability	%CV of potency results ²	Pass				
	Intermediate Precision	95% Cl from VCA ³ model fitted to run-to- run variability	Pass				
⁷⁵ Expected %RP ¹²⁵ ¹⁵⁰	Range	Linearity, accuracy, and precision criteria	Pass				
² Potency results were generated from independent sample replicates prepared at the nominal assay starting	Specificity	Curve visualization	Pass				
concentration and tested on the same day ³ VCA = variance component analysis	Stability-indicating	Potency trend across stability timepoints	Pass				


Bridge Study Planning

Optimizing and re-qualifying Antigen-binding ELISA

Bridge Design

Included language in protocol that any non-equivalency will be further investigated

Study Design and Criteria: Re-developed RGA vs each Assay

Purpose	Samples	Criteria
*Equivalency of Accuracy	 50% RP (n=6) 100% RP (n=6) 150% RP (n=6) 	90% CI of mean difference is within specified bounds at each potency level and overall.
Equivalency of lot- release testing	All DS and DP lots to date (n=2 per sample)	90% CI of mean difference is within specified bounds.
Stability-indicating	Forced degradation timepoints + non-degraded control	Demonstrate similar trends
Precision	Data from accuracy testing	Report Results

*6 independent runs distributed equally across 2 different analysts for each assay

Original versus re-developed RGA at most risk of being non-equivalent

- Original assay demonstrated poor linearity and precision
- Want to accept non-equivalency if caused by superiority of the re-developed RGA. This is why we re-developed!

Bridge Results

Re-developed RGA versus Binding Assays: Equivalency of Accuracy

Equivalency Results of New RGA vs Antigen-Binding ELISA

	Mean A	ccuracy	Mean			
Level	New RGA	ELISA	Difference	90% LCL	90% UCL	Outcome
50%	108.7	105.3	3.4	-5.2	12.0	Pass
100%	96.1	102.5	-6.4	-13.9	1.1	Pass
150%	103.1	99.2	3.9	-2.7	10.4	Pass
Overall	102.6	102.4	0.2	-4.1	4.7	Pass

Equivalency Results of New RGA vs TCR SPR

	Mean Accuracy		Mean			
Level	New RGA	SPR	Difference	90% LCL	90% UCL	Outcome
50%	108.7	92.3	16.4	8.2	24.6	Pass
100%	96.1	93.7	2.4	-4.9	9.7	Pass
150%	103.1	95.7	7.4	0.9	13.9	Pass
Overall	102.6	93.9	8.7	4.6	12.9	Pass

Equivalency Results of New RGA vs Old RGA

Level	Mean A	ccuracy	Mean Difference			Outcome
Level	New RGA	Old RGA	Difference 90% LCL		90% UCL	Outcome
50%	108.7	96.0	12.7	4.1	21.4	Pass
100%	96.1	116.0	-19.9	-82.5	42.7	Fail
150%	103.1	85.8	17.3	3.3	31.3	Fail
1©verall	102.6	99.3	3.3	-15.1	21.9	Fail

- Equivalency criteria were met between new RGA and the antigen-binding ELISA and TCR SPR assays.
- Equivalency criteria were **not** met between the new RGA and old RGA.
 - Triggered follow-up investigation to determine reason for non-equivalency per bridging study protocol.

Re-developed RGA versus Original RGA: Equivalency of Accuracy

50 % RP 150 % RP 100 % RP 300 Retest = 54%RP 200 % Accuracy 100 ELISA New RGA Old RGA ELISA New RGA Old RGA SPR SPR New RGA Old RGA ELISA SPR

Variability in the accuracy of all potency assays

Variability of reportable %RP of all potency assays

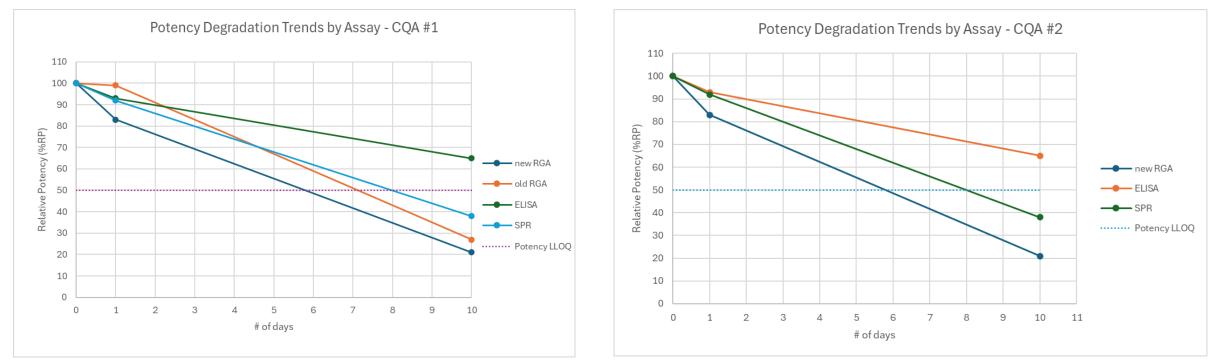
	%CV					
%RP Level	New RGA	Old RGA	ELISA	SPR		
50	9.1	5.7	5.2	1.6		
100	9.2	65.5	3.9	2.3		
150	7.6	19.1	2.9	2.2		

Conclusion: Accept non-equivalencies

- 1. Non-equivalencies due to improved precision of the re-developed RGA
- 2. Justifies why assay was re-developed

Re-developed RGA versus Binding Assays: Equivalency of DS and DP Potency Results

Equivalency in potency lot-release results between new RGA and other assays


Lot	Reportable Result (%RP)					
Lot	New RGA	Old RGA	ELISA	SPR		
Lot #1	109	104	100	104		
Lot #2	101	116	108	111		
Lot #3	103	111	99	102		
Lot #4	103	106	110	107		
Lot #5	107	99	112	109		
Lot #6	94	101	104	111		

Conclusion: Re-developed RGA generates DS and DP lot-release testing results that are equivalent to all other methods

Confidence intervals between different method's testing results

Comparison	Mean Difference	90% LCL	90% UCL	Outcome
New RGA vs old RGA	-3.3	-10.4	3.7	Pass
New RGA vs ELISA	-2.7	-8.8	3.5	Pass
New RGA vs SPR	-4.5	-11.0	2.0	Pass

Re-developed RGA versus other Assays: Equivalency of Stability-Indicating Properties

Note: CQA #2 was discovered after bridging study completion, so these samples were not tested in the old RGA as that method had already been replaced with the new RGA.

• Results show that new RGA is stability-indicating and sensitive to degradation at both Fab regions.

Summary

Summary: Execution and analysis of bridge successful

- 1. Re-developed RGA, Antigen-binding ELISA, and TCR SPR assays demonstrate equivalent performance
- 2. Re-developed RGA shows decreased variability compared to the original RGA
- 3. RGA is cell-based and fully-MoA reflective assay

Overall: Re-developed RGA is suitable as a stand-alone lot-release potency method

Next Steps

- 1. Immediately replaced original RGA with re-developed RGA for all testing
- 2. Implemented new potency strategy for GMP release and stability testing at time of implementing new manufacturing process.
 - Antigen-binding ELISA and TCR SPR to be used for characterization only (ie process comparability studies)

Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful.

AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK +44(0)203 749 5000 www.astrazeneca.com