
BIOASSAYS 2023

Scientific Approaches and Regulatory Strategies

In-vitro Expression Assay (IVE) for potency expression of mRNA vaccine product

Yana Miteva, PhD Senior Scientist *Pfizer*, VRD

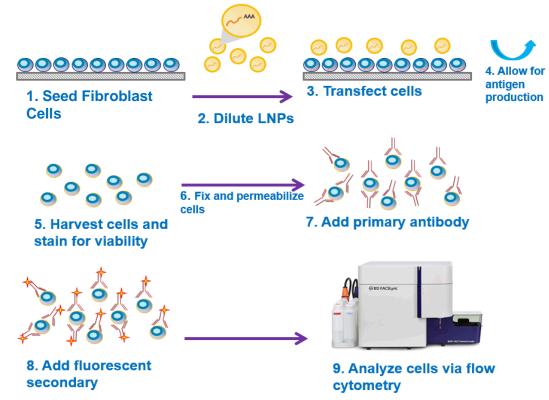
Topics Overview

- Introduction to modern potency assay techniques and new vaccine technology in an established space
- Approaches and challenges to "platform" release methods for quick validation of new strains
- Lessons from rapid pandemic response for other programs
- Correlation of *in-vitro* and *in-vivo* data (*in-vitro* expression as reflection of immunogenicity)

Considerations When Establishing A Potency Assay for mRNA Vaccine Products

In-vitro

- Faster
- Cheaper
- Safer
- Measures drug product itself directly
- Less variable
- Much greater correlation value
- "Platform-ability" to test various antigens
- More limited view of immune system
 response


In-vivo

- More comprehensive view of the immune system response
- Takes longer
- Much more expensive
- More variability

Overview of the In-vitro Expression (IVE) Assay

Confirm protein *in-vitro* expression by flow cytometry

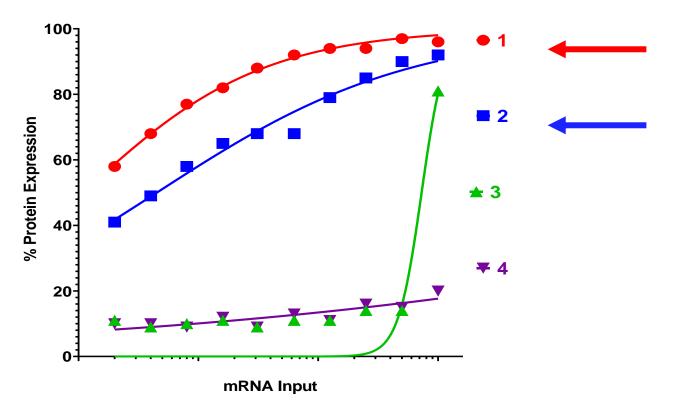
Main Considerations in Developing an IVE Potency Method

Antibody Selection

- Screen of Available Commercial/ In-house Antibodies
- Neutralizing Antibody, if available
- Monoclonal vs. Polyclonal
- Host species
- Epitope mapping (viral strain specificity, mutations)

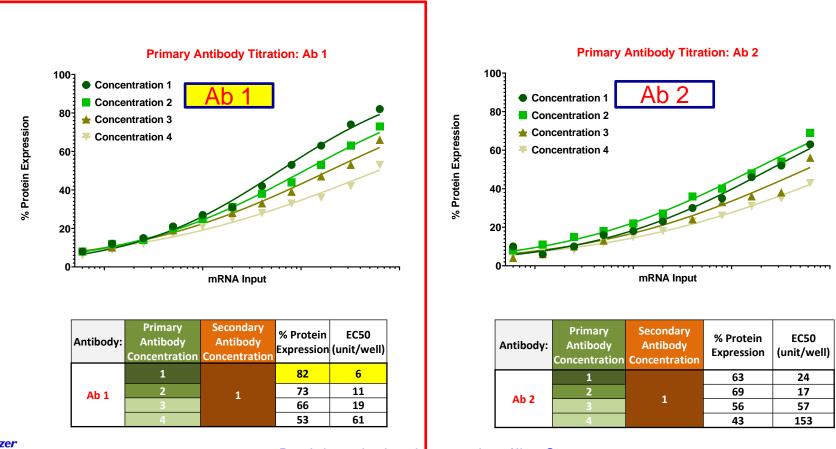
Cell Line

- Permissible to transfectability and antigen expression
- Immune competency
- Ease of handling and maintenance
- Fast growth rate for quick test turnaround time



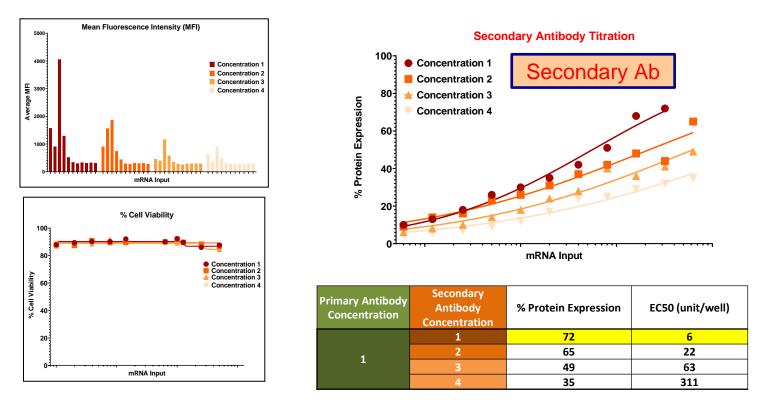
Selection of Neutralizing mAbs that Bind to Four Non-overlapping Epitopes

Primary	Primary Antibodies – Protein X			Protein Domai	n 1 Binding mAbs		Protein Domain 2 Binding mAbs
ltem	Source	Epitope Bins		king ligand binding	mAbs un ligand bir	able to block nding	
1	In-House	Bin-1	7	10			
2	In-House	Bin-2	6	8 11	12 2	3	4
3	In-House	Bin3	1	5			
4	In-House	Bin-4	Epitope	Bin-1	Bin-2	Bin-3	Bin-4



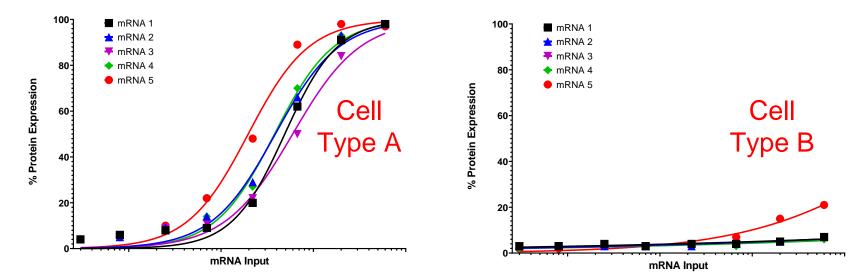
Initial Antibody Screening Shows Antibody 1 and 2 Outperforming the Rest

Screening of Top 2 In-house Antibodies for IVE Assay Highlights Antibody 1 as Best Choice



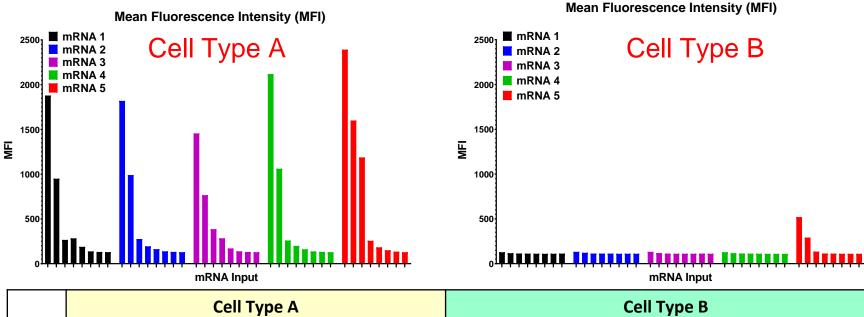
Breakthroughs that change patients' lives[®]

orldwide Research, Development and Medical


accine Research and Deve

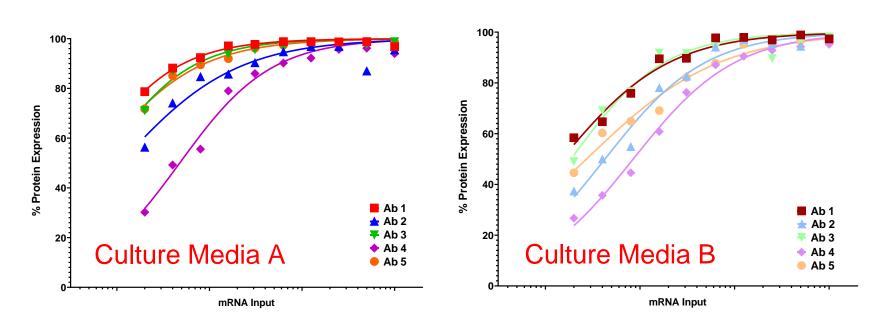
Mean Fluorescence Intensity (MFI) Data Support % Protein Expression Trends With High Cell Viability

Choice of Cells for the IVE Assay Matters



	Cell	Туре А	Cell Type B		
Construct	% Protein Expression	EC50 (unit/well)	% Protein Expression	EC50 (unit/well)	
mRNA 1	91	49	5	>top dose of curve	
mRNA 2	93	39	5	>top dose of curve	
mRNA 3	84	60	5	>top dose of curve	
mRNA 4	93	38	5	>top dose of curve	
mRNA 5	98	20	15	>top dose of curve	

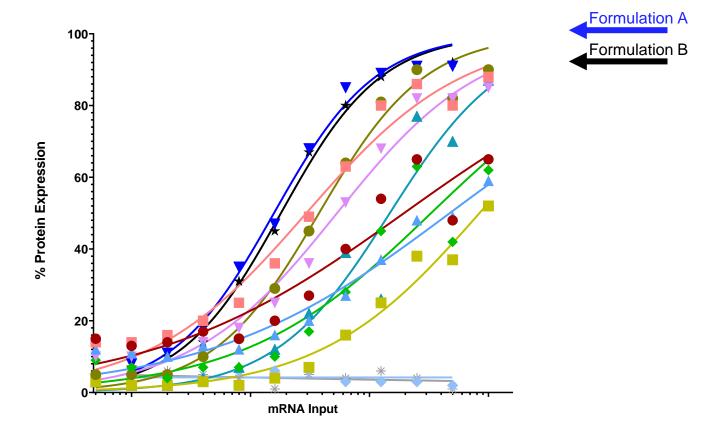
Breakthroughs that change patients' lives[®]


Choice of Cells for the IVE Assay Matters

	Cell	Туре А	Септуре в		
Construct	% Protein Expression	MFI	% Protein Expression	MFI	
mRNA 1	91	949	5	117	
mRNA 2	93	990	5	121	
mRNA 3	84	765	5	118	
mRNA 4	93	1061	5	117	
mRNA 5	98	1600	15	291	

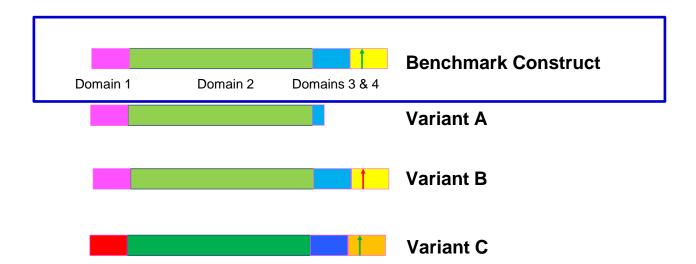
Worldwide Research, Development and Medical Vaccine Research and Development

Media Composition May Impact Protein Expression

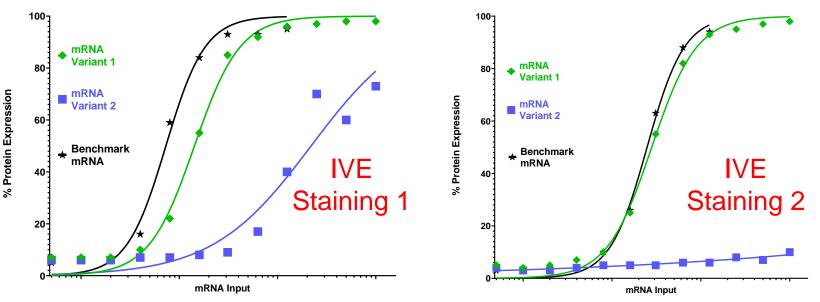


Antibody	% Protein Expression	EC50 (unit/well)
Ab 1	97	0.5
Ab 2	86	1.1
Ab 3	94	0.7
Ab 4	79	4.8
Ab 5	92	0.6

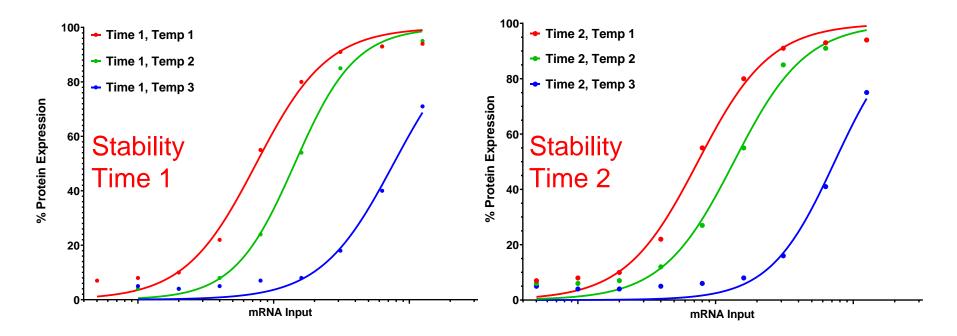
Antibody	% Protein Expression	EC50 (unit/well)	
Ab 1	90	2	
Ab 2	78	4	
Ab 3	92	2	
Ab 4	61	9	
Ab 5	69	3	


Worldwide Research, Development and Medical Vaccine Research and Development

Potency Expression Screen by the IVE Assay Highlights mRNA Products with Formulations A and B as Best Performers



IVE Assay is a Potent Tool to Screen for Potency Expression Differences between mRNA Vaccine Variants and Benchmark Constructs


mRNA Variant 2 Underperforms Two Other Constructs Regardless of Cellular Localization

	Construct	IVE Staining 1			IVE Staining 2		
		EC50	% Positive Cells	MFI	EC50	%Positive Cells	MFI
Γ	mRNA Variant 1	14	85	543	28	55	532
	mRNA Variant 2	220	9	162	<loq< td=""><td>5</td><td>262</td></loq<>	5	262
_[Benchmark mRNA	7	93	1159	25	63	622

Worldwide Research, Development and Medical Vaccine Research and Development

Potency Expression of mRNA Vaccine Products Remains Stable Over Time at All Temperatures

IVE Potency Summary

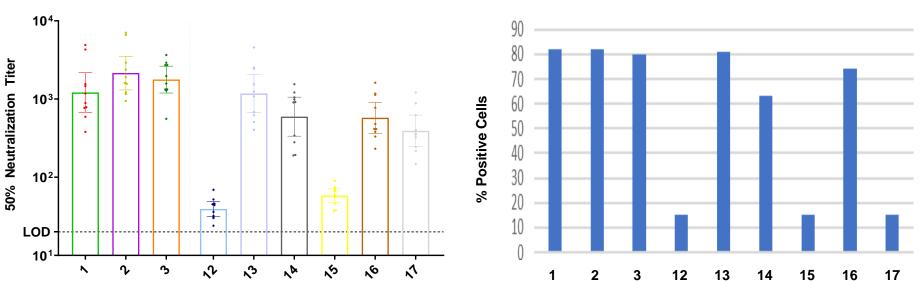
Conclusions:

Assay Establishment:

- Appropriate cell type selection is critical for a robust assay
- Screening and optimization of antibodies for performance in the assay are critical steps
- Ensure that cells are viable and fluorescence intensity shows a strong signal
- Expression is influenced by media conditions

Assay Applications:

- Assay is "platform-able" to allow for testing of various antigens and construct designs
- Assay is stability indicating to monitor loss of potency at different storage temperatures over time



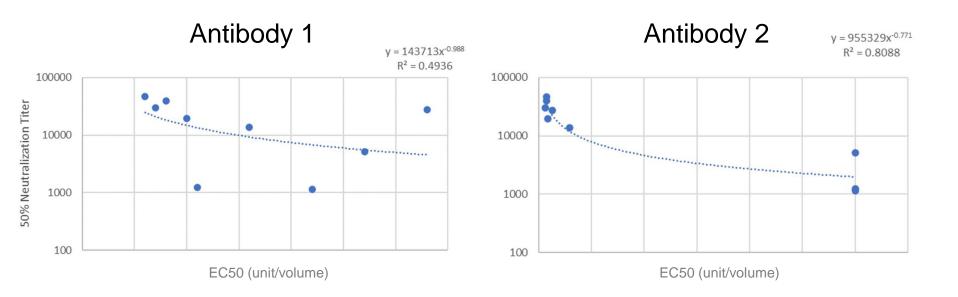
Correlation of in-vitro and in-vivo data

Genetic vaccines: in-vitro expression as a reflection of immunogenicity

In-vitro Expression is Predictive of in-vivo Performance

In-vivo Data

In-vitro Data


mRNA Vaccine Construct Candidates

mRNA Vaccine Construct Candidates

Breakthroughs that change patients' lives[®]

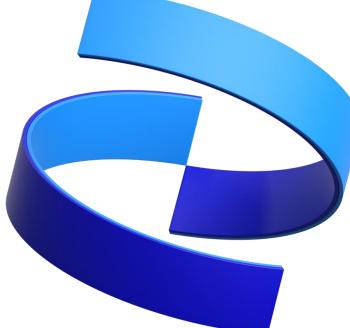
Antibody 2 Shows Good Correlation Between Neutralization Titers and Expression

Breakthroughs that change patients' lives[®]

<u>Summary</u>

- Introduction to modern potency assay techniques and new vaccine technology in an established space
 - Establishing the *In-vitro* Expression (IVE) Assay
 for potency expression of mRNA vaccine products
 - Powerful, fast, and reliable tool to confirm protein presence and in-vitro expression by flow cytometry
- Approaches and challenges to "platform" release methods for quick validation of new strains
 - Method development entails reagent selection/generation and assay conditions optimization
 - Screen of mRNA vaccine variants allows to address strain updates and form multivalent strategies

- Lessons for Rapid Response in a Pandemic Setting and IVE Assay Applications
 - Target info, experimental design, cell type choice are critical aspects to consider
 - Screen mRNA vaccine product formulation
 - Track temperature stability of potency expression over time
 - Compare expression of benchmark vs mutant constructs
- Selection of assay format (*in-vitro* vs. *in-vivo*) & Correlation of *in-vitro* and *in-vivo* data (antibody response)
 - Neutralization response from animals and IVE data strong correlation with high titers
 - Each antigen is unique but you have to do the initial studies to establish connection
 - Monitoring the right epitope with right antibody is critical



Breakthroughs that change patients' lives®

٠

Acknowledgements

Pfizer Vaccine Research & Development Pfizer Early Bioprocess Development Unit (EBPD) Pfizer Analytical Development Group (AD)

Annaliesa Anderson Justin Moran Lynn Phelan Kari Sweeney Efferen

Pfizer IVE Team

Adam Lee Campbell

Meaghan Dineen Haiyan Sun Nancy Khoury Jill Trivedi Darshan Malde

Joshua Kancylarz Eric Tobias Latha Dhandapani Erica Morr

Breakthroughs that change patients' lives[®]

Thank you

