

EVUSHELD: Delivering Bioassay Methods and Critical Reagents Under Highly Accelerated Timelines from Clinical to Commercial phases **CASSS BIOASSAYS 2023**

LeeAnn Machiesky

April 18th 2023

Acknowledgements

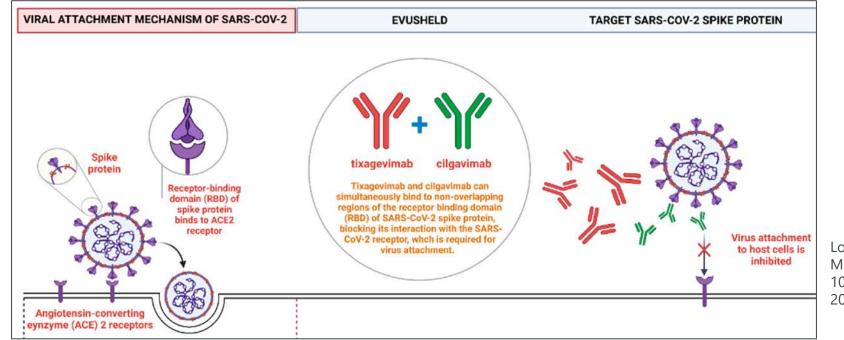
- Liz Christian
- Erika Farmer
- Shihua Lin
- Ermias Shenkut
- Yueh-Ming Loo
- Romina Hofele
- Jared Delmar
- Venu Kannegalla
- Felix Feng
- Nick Knoepfle

- Lori Clarke
- Dylan Weil
- Gilad Kaplan
- Sarav Rajan
- Lori Clarke
- Albert Schmelzer
- Scott Umlauf

EVUSHELD

AZD7442: AZD1061(cilgavimab) and AZD8895 (tixagevimab)

- AZD7442 is monoclonal antibodies (mAb) combination therapy comprised of 2 antibodies targeting non-overlapping epitopes on the RBD of the SARS-CoV-2 spike protein.
- The product is a co-pack of the 2 mAb and route of administration is intermuscular injection. Coformulation was investigated but never launched.
- AZ received Emergency Use Approval (EUA) for EVUSHELD in Dec 2021 and was the paused from the market in Jan 2023.
- The target population is immuno-compromised patients and is the only mAb authorized for <u>pre-exposure</u> treatment.
- Five mAbs authorized for EUA for treatment of mild to moderate COVID-19 disease include: ACTEMRA® (tocilizumab), Bamlanivimab, Bebtelovimab, REGEN-COV® (casirivimab and imdevimab), Sotrovimab.


EVUSHELD

MOA: mechanism of action and engineering

MOA: Binding to RBD of SARS-CoV-2 spike protein, blocking viral entry and attachment

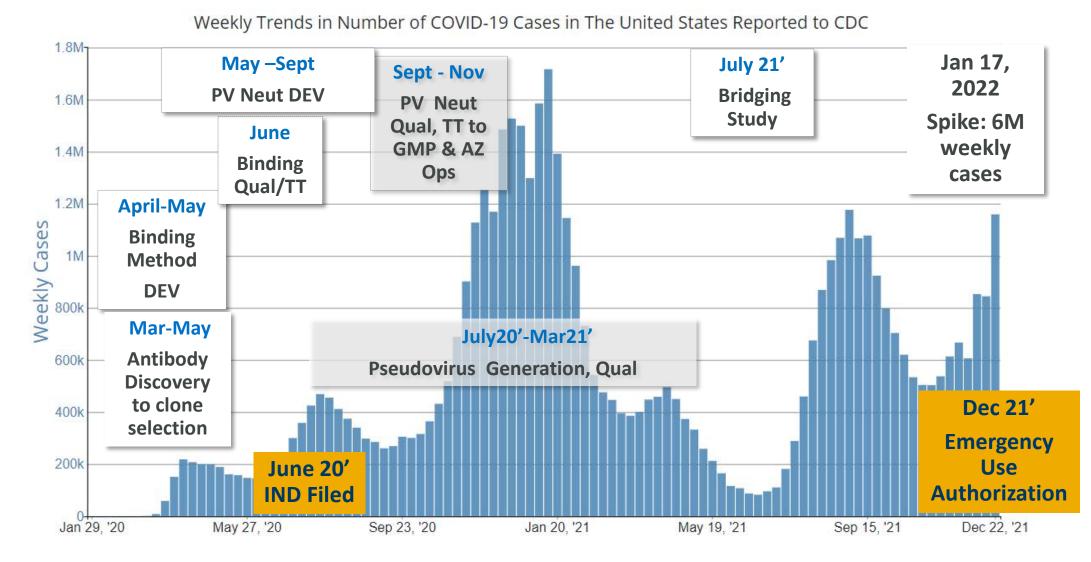
Molecular engineering:

- <u>YTE mutation</u> to increase binding affinity to the FcRn protein which increasing product half-life and thus reduces dosing frequency for patients.
- o <u>TM (triple mutation)</u> to reduce unwanted Fc effector function, thus increasing safety profile.

Loo YM, et al. Sci Transl Med. 2022 Mar 9;14(635):eabl8124. doi: 10.1126/scitranslmed.abl8124. Epub 2022 Mar 9

Overview of Regulatory Approvals Last Modified: 15 Feb 2023 09:31 AM US ET AstraZeneca 😒

EVUSHELD tixagevimab, cilgavimab			55 Authorizations		22 Pathway MA	29 Pathway EUA	4 Pathway Import	2 Indicatio	
1arket	Area	Group	Sub-Group	Pathway	Status	Indication(s)	Regulatory Pathway 🌒	EUA 🛑 Import 🌒 MA	
uwait	INT	MEA	GCC	EUA	Approved	Prophylaxis			
long Kong	INT	China/HK		MA	Approved	Prophylaxis; Mild to Moderate		A CANANA TAN	
irazil	INT	LATAM	Brazil	EUA	Approved	Prophylaxis; Mild to Moderate	Arctic		117
Australia	INT			MA	Approved	Prophylaxis; Mild to Moderate	Ocean		a sta
Saudi Arabia	INT	MEA	GCC	EUA	Approved	Prophylaxis; Mild to Moderate			Chief Chief
Russia	INT			EUA	Approved	Prophylaxis; Mild to Moderate			
јк	EU-CAN	EU5		MA	Approved	Prophylaxis; Mild to Moderate	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		R. C.
Panama	INT	LATAM	CAMCAR	EUA	Approved	Prophylaxis; Mild to Moderate			E. J. D. Main
aiwan	INT	Asia Area		EUA	Approved	Prophylaxis; Mild to Moderate	NO	RTH AMERICA	JROPE
Thailand	INT	Asia Area		MA	Approved	Prophylaxis; Mild to Moderate			
/ietnam	INT	Asia Area		MA	Approved	Prophylaxis	Pacific	Atlantic	
JAE	INT	MEA	GCC	EUA	Approved	Prophylaxis; Mild to Moderate	Ocean	Ocean	
Canada	EU-CAN			MA	Approved	Prophylaxis; Mild to Moderate		A	FRICA
Costa Rica	INT	LATAM	CAMCAR	EUA	Approved	Prophylaxis; Mild to Moderate			19 NO 10
EU (EMA)	EU-CAN			MA	Approved	Prophylaxis; Mild to Moderate		SOUTH AMERICA	Indian 🍟
celand	EU-CAN	Nordics		MA	Approved	Prophylaxis; Mild to Moderate	4		Ocean
Norway	EU-CAN	Nordics		MA	Approved	Prophylaxis; Mild to Moderate			
Switzerland	EU-CAN	WESE		MA	Approved	Prophylaxis	A Hannach Dian		
apan	INT			MA	Approved	Prophylaxis; Mild to Moderate	Hicrosoft Bing	© 2022 TomTom, © 20	023 Microsoft Corporation, <u>© Oper</u>
taly	EU-CAN	EU5		Import	Approved	Prophylaxis; Mild to Moderate			
Singapore	INT	Asia Area		EUA	Approved	Prophylaxis			
New Zealand	INT	AU/NZ		MA	Approved	Prophylaxis			
South Korea	INT	Asia Area		EUA	Approved	Prophylaxis			
Mexico	INT	LATAM	Mexico	EUA	Approved	Prophylaxis			


Overall Analytical Strategy

Delivery of full panel of lot release methods in 8-10 weeks.

Analytical Release Panel					
Appearance - clarity					
Appearance - color					
Appearance – particles					
Bioburden					
Capillary isoelectric focusing (cIEF)					
Endotoxin					
High performance size exclusion chromatography (HPSEC)					
Host cell proteins					
Host cell DNA					
Non-reducing CE-SDS					
Osmolality					
рН					
Protein A					
Polysorbate 80					
Sterility					
Sub-visible particles					
SARS-COV-2 RBD binding DELFIA					
Total protein					

Accelerated Delivery of Potency Methods

7

https://covid.cdc.gov/covid-data-tracker/#trends_weeklycases

Bioassay Strategy

Guidance Documents for Anti-viral Products

Pre-pandemic – Dec 2020:

"Guidance for Industry: Anti-viral Products: Conducting and Submitting Virology Studies to the Agency" 71 FR 32351, first published in 2006.

January 2021:

"Guidance for Industry: COVID-19 Potency Assay Considerations for Monoclonal Antibodies and Other Therapeutic Proteins Targeting SARS-CoV-2 Infectivity."

March 2023:

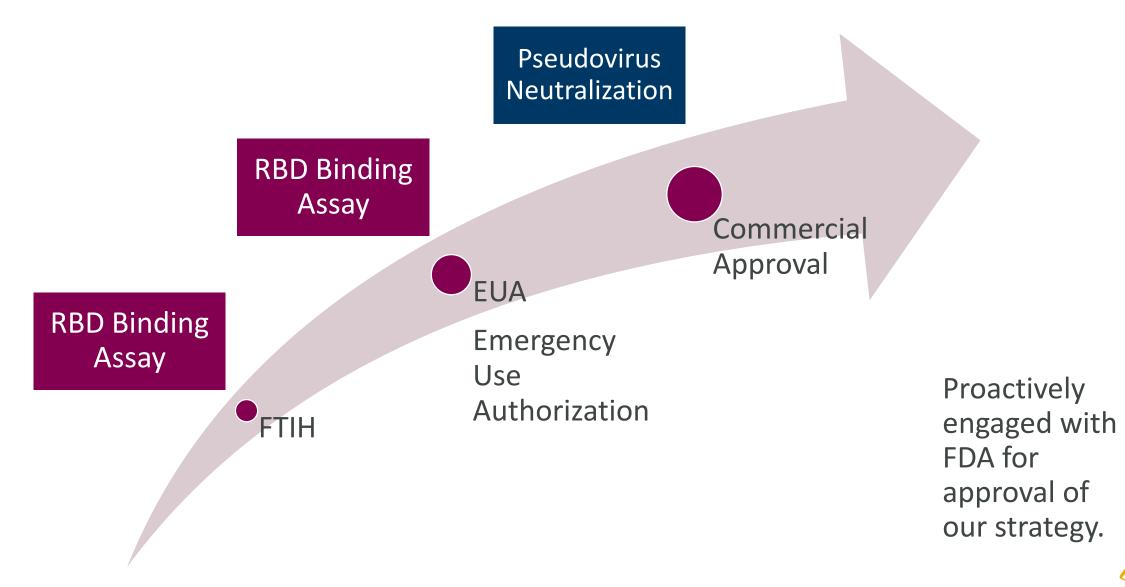
"Guidance for Industry: Potency Assay Considerations for Monoclonal Antibodies and Other Therapeutic Proteins Targeting Viral Pathogens."

Regulatory Guidance released from FDA, in January 2021

COVID 19: Potency Assay considerations for monoclonal antibodies and other therapeutic proteins targeting SARS-CoV-2 infectivity

A. Methods

Although a binding assay is generally sufficient to serve as a potency assay at the IND stage of development, because it demonstrates binding between the mAb or therapeutic protein and its target, a binding assay assesses only one aspect of the potency of a product; therefore, sponsors should subsequently develop methods that more comprehensively monitor the proposed mechanism(s) of action of the products. These methods should be incorporated into drug substance and drug product release testing and stability protocols. Potency assays should be described, justified, qualified, and validated to support a BLA.


2. Viral Neutralization Assays

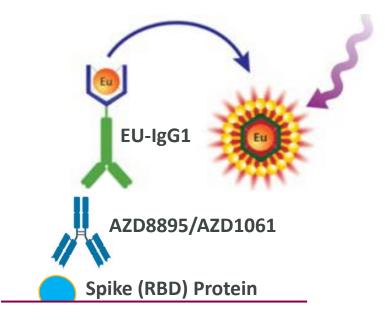
In comparison to binding assays, in vitro viral neutralization assays more comprehensively confirm a mAb's or therapeutic protein's mechanism of action and potency in blocking viral entry into susceptible cells. Because of the potential importance to evaluating these products, the Agency recommends establishing an in vitro viral neutralization assay early in development. This type of assay can be useful for advancing development, quality control, and characterization of neutralizing mAbs and other products targeting viral entry. The SARS-CoV-2 cellular entry includes four steps:

- (1) Binding to the cell surface receptor ACE2
- (2) Proteolytic cleavage of the spike (S) protein (by TMPRSS2 and/or Cathepsin L)
- (3) Six-helix bundle formation leading to virus-cell fusion
- (4) Release of the viral capsid into the cytosol

Assays that assess the ability of the protein(s) to inhibit any of these steps are predominantly cell-based assays and typically involve the use of wild-type (wt) virus, pseudotyped virus, or pseudotyped virus-like particles (VLP). When considering which method to use, sponsors

Potency Lot Release Strategy

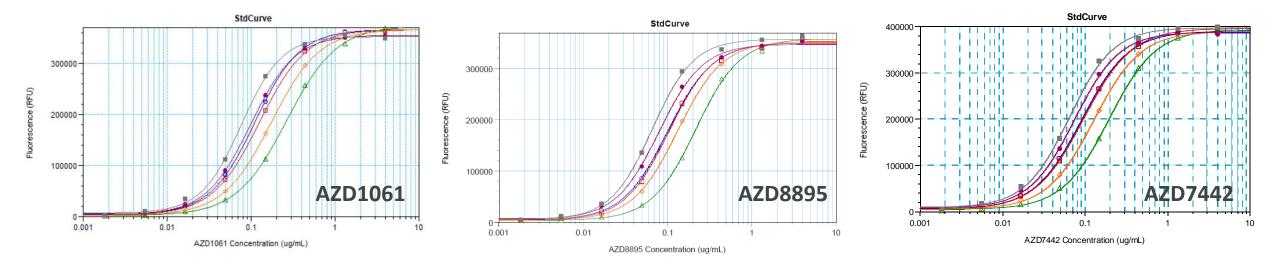
Characterization Strategy


* External lab

Lot Release Binding Assay

13

Utilized DELFIA[®] binding method for rapid development


- 1 plate assay design
- Established incubation times
- Critical reagents main point of development
 Binding protein (Spike, S1, RBD?)
 - EU-IgG secondary mAb
 - Product mAb concentration and dilution interval
- Quick transfer to GMP lab due to analyst familiarity with DELFIA assay format
- Ability to initiate automation early

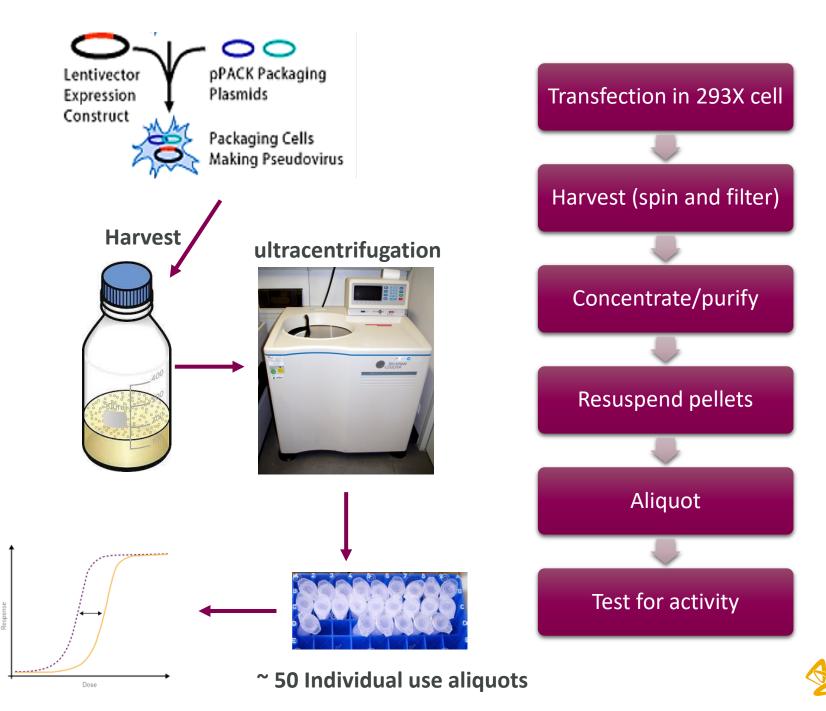
From initial clones to qualification in 2 months

Method Qualification

- Qualification was conducted according to ICH guidelines Q2 R1, R2.
- All assays passed criteria for linearity, intermediate precision, repeatability, range (50-150%), specificity and stability indicating properties.
- Performed method co-qualification with GMP testing group.
- Also qualified method on Hamilton Robot for DEV and GMP testing.

Also tested emerging strains of SARS-CoV-2 for product characterization.

Virus Neutralization Assays


16

Virus Neutralization Assays

Pseudovirus Neutralization Live Virus Killing Assay – BSL3 Vero cells SARS-COV-2 Pseudovirus (Luc) ACE2 infection AD293 cells Mab A* Mab B* **Cells fixed** Immunoassay with **Fluorescence readout**

"Making a Pseudovirus small scale <3L"

> Research process in place.

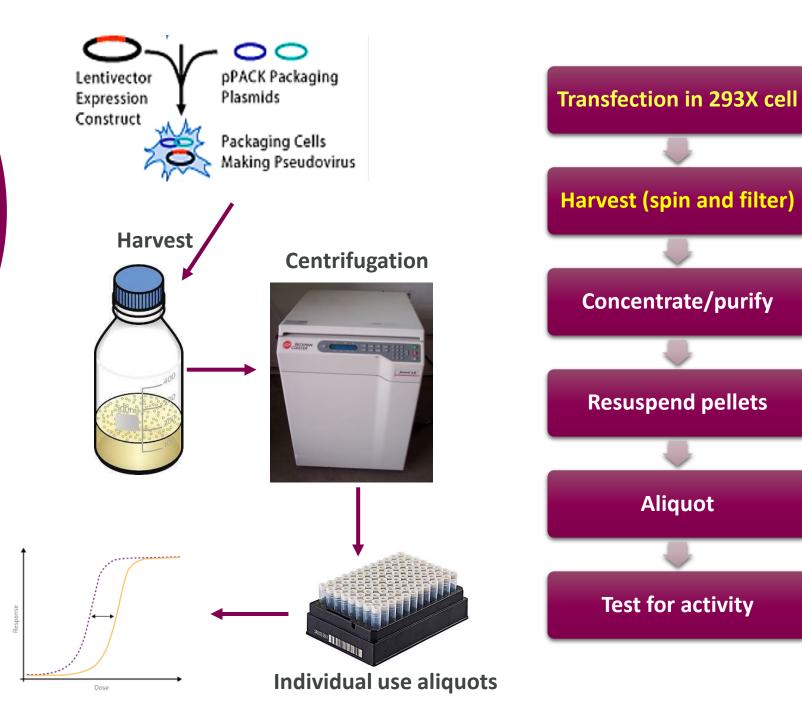
"But how do we Scale-up?"

Major Hurdles found during Scale-up and need for GMP quality reagents

Major Hurdles for Scale up:

- 1. Low virus Titer
- 2. Concentration Step:
 - Large volumes 3L to 10 L
 - Equipment availability
- 3. Speed of the process (viral activity matters)

Solution:


- 1. Changed the plasmid ratio
- Moved from using an ultracentrifuge to floor centrifuge + sucrose cushion
- 3. Moved purification step from research to development labs SCIENTIFIC REPORTS

An optimized method for hightiter lentivirus preparations without ultracentrifugation Wei Jang^{1,1,1}, Rei Hue^{1,1,2}, Mangping Wei^{1,1,2}, Chenhong Li¹, Zilong Giu¹, Xiaofei Yang¹ & Chen Zhang¹



Updated plasmid ratio & Concentration Step!

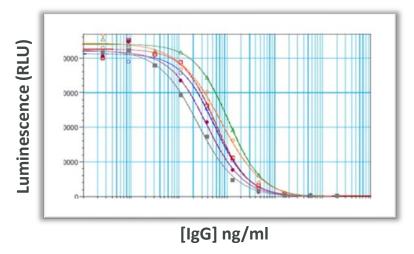
New process production was successful.

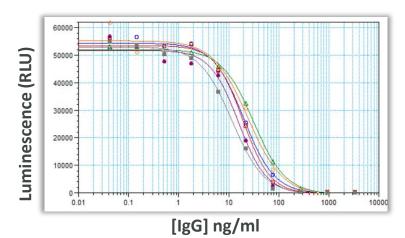
"How many scientists does it take to make Pseudovirus?"

Sequence#	#vials	Dilution in assay	
-Lot #5	290	1:50	
-Lot #6	320	1:50	
-Lot #7	324	1:50	

After moving the concentration step to the development lab, we were able to make 3 active lots in sequence.

PV Method Development and Qualification


Development:


Investigated many parameters: reagent volumes, pre-plating cells, use of dextran, incubation temperature, media components; however, no major changes were made. Found that the activity of the PV was the most impactful component for method performance and variability of the upper asymptote.

Qualification:

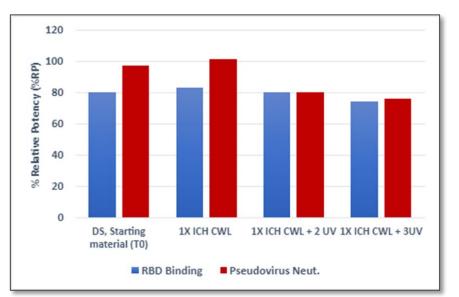
Qualification was executed in April 2021 according to ICH guidelines Q2 R1,R2. Assays passed the qualification targets; however, results for **accuracy, intermediate precision, repeatability** were close to the limits of the acceptance criteria.

Methods for AZD1061 and AZD8895 were successfully transferred to the GMP team, commercial team and eventually to CROs in China and South Korea.

Bridging Study: DELFIA binding vs PV Neutralization

Equivalence Across Potency Range:

Potency Levels	Mean % Recovery Target Binding	Mean % Recovery PV Neut	Mean Difference		CI of Difference
50%	100.4	93.1	-7.3	-17.4	2.8
75%	102.1	92.8	-9.4	-19.5	0.8
100%	100.1	92.8	-7.3	-17.4	2.8
125%	101.5	105.0	3.5	-6.6	13.7
150%	105.5	100.9	-4.6	-14.7	5.6


Comparison of DS Release result across multiple lots:

Mean Difference	Estimated Standard Error	90% Cl of Me	an Difference
7.5	2.9	2.2	12.7

- 2 x Process 1, 2000L scale @ site 1
- 3 x Process 2, 2000L scale @ Site 1
- 6 x Process 2, 15K scale @ site 2

Comparison of stressed samples and stability samples.

No significant different in %RP between methods for samples stressed with UV or 40°C.

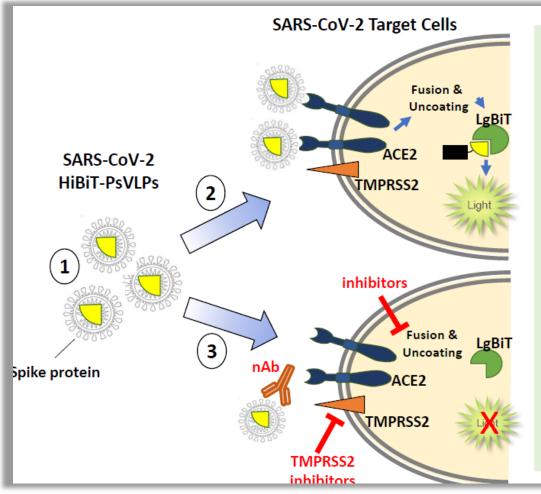
Remaining Hurdles for use of PV Neutralization Method

- Assay variability is higher than desired.
- Production of additional lot of virus requirement significant time resources.
- Significant time and required to meet shipping requirements for sending PV to China and possibly other countries.
- No commercial manufacturer of the PV, therefore not the most viable option for commercial lot release.
- Major re-work required to manufacturer new strains of PV.

What should be our path forward for our next generation of anti-COVID mAbs?

"Potency Assay Considerations for Monoclonal Antibodies and Other Therapeutic Proteins Targeting Viral Pathogens Guidance for Industry"

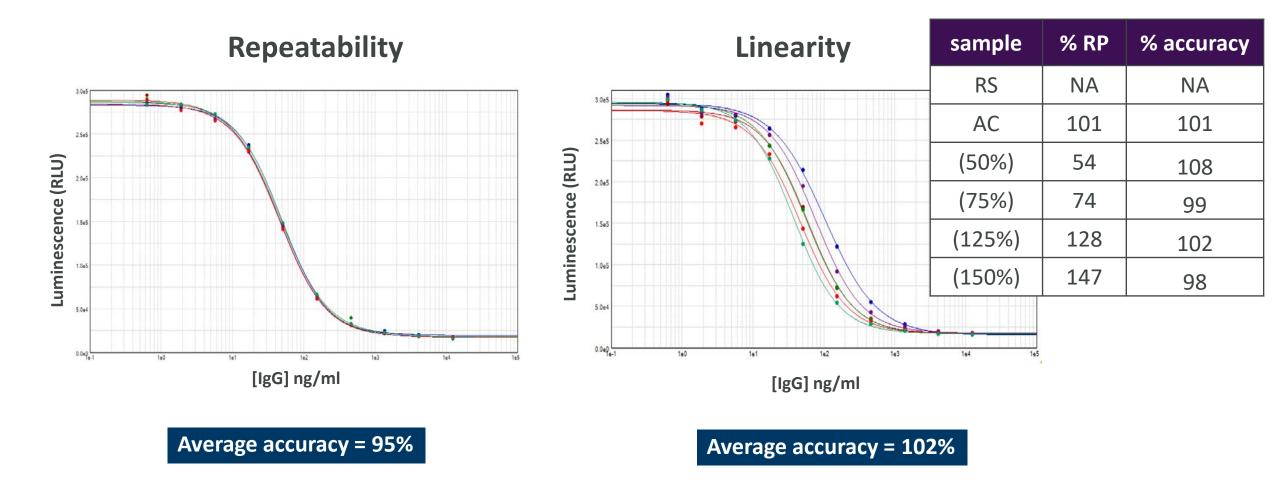
DRAFT GUIDANCE


March 2023

2. Viral Neutralization Assays

In comparison to binding assays, in vitro viral neutralization assays more comprehensively confirm a mAb's or therapeutic protein's mechanism of action and potency in blocking infection of susceptible cells. Because of the potential importance to evaluating these products, the Agency recommends establishing an in vitro viral neutralization assay early in development. This type of assay can be useful for advancing development, quality control, and characterization of neutralizing mAbs and other products targeting viral attachment and entry. Given the diversity of mechanisms for viral attachment and entry into host cells, the assay should reflect that virus's mechanisms for attachment and entry.

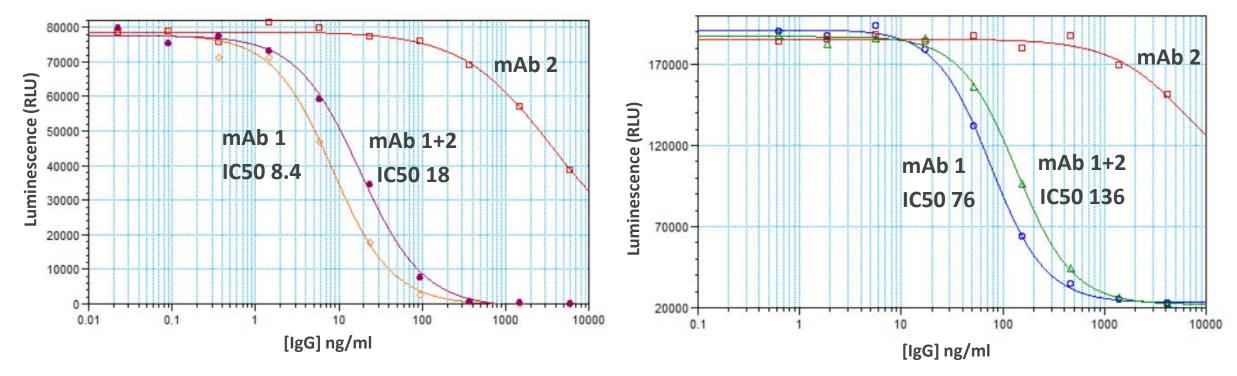
Assays that assess the ability of the mAbs or other therapeutic proteins to inhibit any of the binding or entry steps are predominantly cell-based assays and typically involve the use of wild-type (wt) virus, ¹⁹ pseudotyped virus, or pseudotyped virus-like particles (VLP). When considering which method to use, sponsors should select a method that best monitors the binding/entry step the product is expected to target in the virus replication cycle. Although wt virus neutralization assays are considered the gold standard for in vitro potency assays, alternative methods may be acceptable. For example, a potency assay could be designed to characterize the effect of the product on a specific entry step (e.g., virus-cell fusion). Additionally, accessibility to appropriate BSL laboratories, as well as challenges to qualifying critical reagents and validating the overall assay performance, should be considered in assay selection. For methods using transfected cell lines, sponsors should also address target cell viability and variability. Whichever method is ultimately used, sponsors should observe all provisions of the select agent regulations²⁰ (if applicable) and other applicable governmental and institutional biosafety and biosecurity provisions.


VLP Assay System from Promega

Assay Design:

- 1. HiBiT-tagged VLPs pseudotyped with SARS-CoV-2 Spike protein are added to SARS-CoV-2 Target Cells
 - HiBiT is packaged inside the PsVLPs
- In the absence of inhibitors or neutralizing antibodies (nAbs), SARS-CoV-2 HiBiT-PsVLPs bind to target cells via Spike/ACE2 interaction and undergo membrane fusion mediated by cellular proteases. HiBiT is released into target cells and binds to LgBiT to generate a luminescent signal in the presence of substrate.
- In the presence of inhibitors or nAbs of SARS-CoV-2 entry, the entry/fusion processes of PsVLPs are blocked, thereby preventing HiBiT release. No luminescent signal is produced.

VLP Neutralization Results (omicron strain)



Assay system produces very accurate results with little optimization required.

PV vs VLP Neutralization Assay (omicron strain)

PV Neutralization

VLP Neutralization

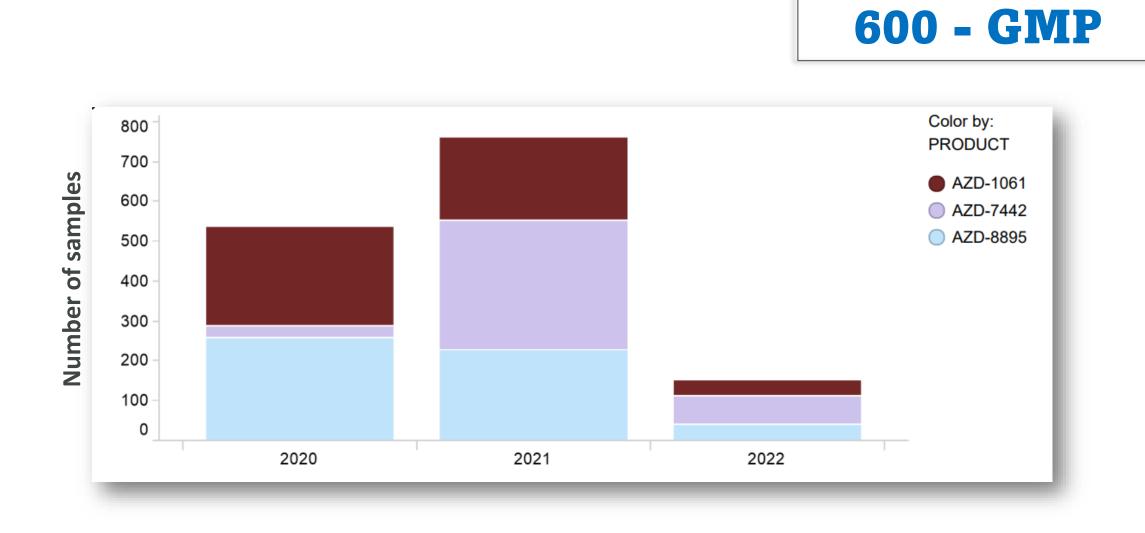
Similar shifts in neutralization between antibodies indicates methods are comparable and representing virus neutralization using similar system kinetics.

28

PV vs VLP neutralization method:

VLP method is preferred method for testing of future anti-SARS-CoV-2 IgGs

	Pseudovirus method	VLP method
Assay incubation time?	20-22 hrs	4 hrs
Commercial source of CR?	No	yes
Inhouse plasmids needed?	Yes	No
Biosafety concerns for shipping?	Yes	No
New strains can be made rapidly?	Yes, but not in bulk. Scale up can take months of optimization and testing.	Likely yes. Would take 1-2 months for new lots. Multiple strains are available.
Method variability?	Medium	Low
Recommended by FDA as surrogate for live virus?	Yes	yes


Critical Reagents purchased/made, vialed & qualified

2020-22 for EVUSHELD

Reagent	# of Vials	Source
Wuhan RBD	1600	External
EU-lgG	1600	External
RBD mutant (1061)	500	AZ
RBD mutant (8895)	500	AZ
Pseudovirus Lot#1,2	580	AZ
Pseudovirus Lot#5,6,7	950	AZ
ACE-2 (ARCB) inhouse	390	AZ
ACE-2 (ARCB) contract lab	1000	External

1,400- DEV

2000 Samples Tested in18 months

Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com