Potency Bioassays for Cell and Gene Therapy Products

Matthew Klinker, PhD
CMC Reviewer/Biologist; Cell Therapy Branch 2
Office of Therapeutic Products (OTP)
U.S. Food & Drug Administration
CASSS Bioassays Meeting; April 19, 2023
Scope of Discussion

• Why is potency testing so challenging for cell and gene therapy (CGT) products?

• How to develop meaningful potency assays for CGT products

My comments are an informal communication and represent my own opinions and best judgement. They do not bind or otherwise obligate or commit the agency to the views expressed.
CBER’s Office of Therapeutic Products (OTP)

- CGT products were previously reviewed by CBER’s Office of Tissues and Advanced Products (OTAT)
- In 2023, OTAT was reorganized into the **Office of Therapeutic Products (OTP)** – a newly established “super office” within CBER composed of six new offices:
 - Three CMC Offices: Office of Gene Therapy (OGT), Office of Cellular Therapy and Human Tissue (OCTHT), and Office of Plasma Protein Therapeutics (OPPT)
 - Office of Clinical Evaluation (OCE)
 - Office Pharmacology/Toxicology (OPT)
 - Office of Review Management and Regulatory Review (ORMRR)
- Reorganization aims to increase review capabilities and creates flexibility and capacity for future growth to meet hiring goals outlined in PDUFA VII
Diversity of OTP-Regulated Products

- Gene therapies (GT)
 - Ex vivo genetically modified cells
 - Non-viral vectors (e.g., plasmids)
 - Replication-deficient viral vectors (e.g., adenovirus, adeno-associated virus, lentivirus)
 - Replication-competent viral vectors (e.g., measles, adenovirus, vaccinia)
 - Microbial vectors (e.g., Listeria, Salmonella)

- Stem cells/stem cell-derived
 - Adult (e.g., hematopoietic, neural, cardiac, adipose, mesenchymal)
 - Perinatal (e.g., placental, umbilical cord blood)
 - Fetal (e.g., neural)
 - Embryonic
 - Induced pluripotent stem cells (iPSCs)

- Products for xenotransplantation

- Functionally mature/differentiated cells (e.g., retinal pigment epithelial cells, pancreatic islets, chondrocytes, keratinocytes)
- Therapeutic vaccines and other antigen-specific active immunotherapies
- Blood- and Plasma-derived products
 - Coagulation factors
 - Fibrin sealants
 - Fibrinogen
 - Thrombin
 - Plasminogen
 - Immune globulins
 - Anti-toxins
 - Venom antisera for scorpions, snakes, and spiders

- Combination products
 - Engineered tissues/organs

- Devices

- Tissues
Defining “Potency” for Biologics

21 CFR § 600.3(s) – Definitions

“The word potency is interpreted to mean the specific ability or capacity of the product, as indicated by appropriate laboratory tests or by adequately controlled clinical data obtained through the administration of the product in the manner intended, to effect a given result.”

21 CFR § 610.10 - Release Requirements

“Tests for potency shall consist of either in vitro or in vivo tests, or both, which have been specifically designed for each product so as to indicate its potency in a manner adequate to satisfy the interpretation of potency given by the definition in § 600.3(s) of this chapter.”

Tests for Potency Should:

• Test an attribute related to the product’s ability to mediate a clinical effect
• Be designed specifically for the product
• Be conducted on every lot prior to release

21 CFR § 610.1 - Release Requirements

“No lot of any licensed product shall be released by the manufacturer prior to the completion of tests for conformity with standards applicable to such product.”
Bioassays of this design work well for measuring the potency of traditional drugs with well-characterized MOAs, but measuring potency of complex products can be more challenging.
Controlling CGT Product Potency

• Identifying attributes related to potency can be challenging:
 – Mechanisms of action (MOAs) may be complex or not fully characterized
 – Cell-based products are particularly complex and can have extensive lot-to-lot variability
• A loss of potency may not be immediately reflected in a change in physical attributes (e.g., viability, apoptotic markers)
• Some CGT products have very short shelf-lives, limiting the types of assays that can be completed before lot release
• Material available for testing may be limited due to smaller manufacturing scales
• Limited availability of reference standards and controls
Different manufacturing paradigm

Conventional Drug/Biologic

- 1 product lot
- Many patients
- Raw materials
- CGMPs
- Advanced manufacturing
- In process and lot release testing
- Scale up/scale out
- Comparability
- Distribution
- Impact of manufacturing failure

Cell & Gene Therapy Products

- 1 product lot
- Few patients
- Single patient

1 product lot
GUIDANCE DOCUMENT

Potency Tests for Cellular and Gene Therapy Products

Final Guidance for Industry:

JANUARY 2011

https://www.fda.gov/media/79856/download
“The traditional approach for assessing the potency of biological products is to develop a quantitative biological assay (bioassay) that measures the activity of the product related to its specific ability to effect a given result [...]. Bioassays can provide a measure of potency by evaluating a product’s active ingredient(s) within a living biological system [such as] in vivo animal studies, in vitro organ, tissue or cell culture systems, or any combination of these.”

Methods for Measuring Potency of CGT Products:

- **Bioassays (Direct Measurement):**
 - Evaluating a product’s active ingredient(s) *within* a living biological system
 - Can be animal models, *in vitro* organ, or tissue or cell culture systems

- **Analytical Assays (Indirect Measurement):**
 - Performed outside a living test system (e.g., immunochemical, biochemical, or molecular testing)
 - Can be used to demonstrate potency if the surrogate measurements can be substantiated by correlation to a relevant product-specific activity
When might a single potency assay not be sufficient?

- Multiple active ingredients and/or multiple biological activities
- Complex and/or not fully characterized mechanism of action
- Biological assay is not quantitative, not sufficiently robust, or lacks precision
- Limited product stability

If one assay is not sufficient, can use multiple complementary assays (an assay matrix) that measure different product attributes

- May be composed of biological assays, analytical assays, or both
- Qualitative assays should be accompanied by one or more quantitative assays

If analytical methods are used, you should provide sufficient, scientifically sound data to establish a correlation between the surrogate measure and a biological activity related to the potency of the product
Developing a Potency Assay

- Regulations are very flexible with regards to the kind of assay that can be used as long as it is measuring a meaningful biological parameter.
- It is not a regulatory requirement to fully define the mechanism of action, nevertheless, it is useful to have an understanding of how the product is likely to work.
- FDA recommends developing an assay early and evaluating multiple potential measures of potency.
- At least one quantitative potency assay should be in place before initiation of a clinical study(s) intended to provide evidence of effectiveness to support a marketing application.
Later Phase Potency Assay Expectations

If product manufacturing and controls are not adequate, FDA may not permit Phase 3 studies or file a BLA

By end of Phase 2:
- Manufacturing process consistency, control variables
- Product stability
- Adequacy of product characterization

Potency assay must be in place for Phase 3

By end of Phase 3 /Pre-BLA:
- Comparability
- Scale-up
- Test method validation
- Process Validation
- Justification of specification
- Finalizing lot release plans
- Facility inspection
- Stability (for expiry dating, shipping)
A Critical Quality Attribute (CQA) is a physical, chemical, biological, or microbiological property or characteristic that should be within an appropriate limit, range, or distribution to ensure the desired product quality. - ICH Q8 (R2)

- Explore many CQAs during early development
 - Report results early in development
 - Choose relevant tests for later phase studies

- Evaluate multiple measures of CQAs (especially potency)
 - Matrix of assays
 - Orthogonal methods
 - Stability indicating
Summary

• CGT products present many challenges to potency assay development, but regulations allow for considerable flexibility in how potency is measured so long as the method reliably controls a meaningful product attribute related to potency.

• Potency-related CQAs for some CGT products may not be well established, so starting product characterization early in development can help identify attributes relevant to product potency that can be measured reliably.
Contact information

• Matthew Klinker, PhD
 Email: matthew.klinker@fda.hhs.gov

• Regulatory Questions:
 OTP Main Line – 240 402 8190
 Email: OTPRPMS@fda.hhs.gov

• OTAT (OTP) Learn Webinar Series:
 http://www.fda.gov/BiologicsBloodVaccines/NewsEvents/ucm232821.htm

• CBER website: www.fda.gov/BiologicsBloodVaccines/default.htm
 Phone: 1-800-835-4709 or 240-402-8010

• Consumer Affairs Branch: ocod@fda.hhs.gov

• Manufacturers Assistance and Technical Training Branch: industry.biologics@fda.gov

• Follow us on Twitter: https://www.twitter.com/fdacber